• Title/Summary/Keyword: Ecofriendly

Search Result 108, Processing Time 0.029 seconds

The Surface Properties and Wear Resistance of Cr-Mo-V Steel by Salt bath Process after Pseudo-electrolysis (의(擬)전기분해식 염욕질화처리를 통한 Cr-Mo-V강의 내마모와 표면성질에 관한 연구)

  • Jung, Gil Bong;Yoon, Jae Hong;Hur, Sung Kang
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.225-234
    • /
    • 2010
  • Salt bath nitriding, which has been developed recently by domestic company, is an emerging ecofriendly surface treatment. The salt bath nitriding is accompanied by the electrolysis process in the pretreatment step, and this whole processis called Pseudo-Electrolysised Salt bath Nitriding (PESN). The PESN creates only $NH_3$ and non-toxic salts without harmful $CN^{-}$ or toxic gas such as that found in previous salt bath nitriding. In general, ion nitriding and gas nitriding create high hardness and a strong brittle white layer on the surface. However, the PESN shows a thin white and gray layer. The PESN was applied to the defense material, 3%Cr-Mo-V steel, to study the surface characteristics at $480^{\circ}C$, $530^{\circ}C$, and $580^{\circ}C$ for 4 hrs, 20 hrs, 40 hrs, and 60 hrs of nitriding time condition. As a result, the best nitriding layer was found at $530^{\circ}C$ for 40 hrs. If we improve corrosion resistance and nitriding layer depth, the PESN will be able to be applied to the defense industry parts.

Formaldehyde-Free Durable Flame-Retardant Finish of Cotton Fabrics Using Vinyl Bisphosphonic Acid and Acrylamide (비닐이포스폰산과 아크릴아미드를 이용한 면직물의 포름알데히드-프리 내구성 방염가공)

  • Jang, Mi-Ji;Jang, Jinho
    • Textile Coloration and Finishing
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2022
  • The durable FR treatments such Pyrovatex and Proban have been used for cotton fibers, while the finishes involve toxic ammonia or formaldehyde release during finishing process or finished products. In this study, ecofriendly flame-retardant treatment of cotton fabrics was carried out using UV-curable formulations of Vinyl bisphosphonic acid (VBPA), Acrylaminide and Triacryloylhexahydro-1,3,5-triazine, as a monomer, a comonomer and a cross-linking agent respectively, which can introduce a cross-linked copolymer networks. With an optimal finish formulation, the flame retardancy of LOI 29.8 was maintained even after 10 laundering cycles. In TGA analysis, the DTGA peak decreased from 389℃ to 252℃ and the amount of char yield increased from 6.1% to 46.1% compared to the untreated cotton. In addition, MCC analysis showed that Peak HR and THR decreased by 59.4% and 69.2% respectively, compared to the untreated cotton. The pyrolysis and combustion behaviors of the FR-treated cotton implied a condensed-phase flame-retarding mechanism.

Solar-driven steam flow for effective removal of particulate matters (PM) (태양열 기반 증기 유동을 이용한 미세먼지 제거 연구)

  • Kim, Jeongju;Kim, Jeong Jae
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.3
    • /
    • pp.130-135
    • /
    • 2021
  • Water vapor has received worldwide large attention due to its broad technological implications ranged from resource production and environmental remediation. Especially, one of the typical areas where the water vapor is important is the removal of PM (particulate matter) which causes a critical hazard to human health. However, most vapor-based PM removal methods are limited in removing PM2.5 by using relatively large water droplets and consume large energy. Here, we propose a superhydrophilic thermally-insulated macroporous membrane to generate steam flow. The water vapor directly captures PM with steam flow and hygroscopic characteristic of PM. The steam, the cluster of water vapor, from the membrane gives rise to high removal efficiencies compared to those of the control case without light illumination. To reveal PM removal mechanism, the steam flow and PM were quantitatively analyzed using PIV measurement. The proposed steam generator could be utilized as an economical and ecofriendly platform for effective PM removal at a fairly low cost in a sustainable, energy-free, and harmless-to-human manner.

Experimental performance characteristics of 1 kW commercial PEM fuel cell

  • Shubhaditya Kumar;Pranshu Shrivastava;Anil Kumar
    • Advances in Energy Research
    • /
    • v.8 no.4
    • /
    • pp.203-211
    • /
    • 2022
  • The aim of this paper is to analyze the performance of commercial fuel cell (rated capacity 1000W) with the help of resistive load and output power variation with change in H2 flow rate and calculate the maximum power point (MPP) of the proton exchange membrane (PEM) while changing AC and DC load respectively. The factors influencing the output power of a fuel cell are hydrogen flow rate, cell temperature, and membrane water content. The results show that when the H2 flow rate is changed from 11, 13, and 15 Lpm, MPP is increased from lower to higher flow rate. The power of the fuel cell is increased at the rate of 29% by increasing the flow rate from 11 to 15 lpm. This study will allow small-scale industries and residential buildings (in remote or inaccessible areas) to characterize the performance of PEMFC. Furthermore, fuel cell helps in reducing emission in the environment compared to fossil fuels. Also, fuel cells are ecofriendly as well as cost effective and can be the best alternative way to convert energy.

Emission Control Routes in Container Shipping between Korea-China

  • Je-Ho Hwang;Si-Hyun Kim
    • Journal of Korea Trade
    • /
    • v.27 no.3
    • /
    • pp.119-146
    • /
    • 2023
  • Purpose - As the severity of air pollution caused by the shipping industry is becoming evident, port authorities have started making efforts to reduce air pollutants. Considering the limitations of the currently implemented emission-control area (ECA) and vessel-speed reduction program (VSRP), which are narrow in the designation range and navigation behavior of ships, this study proposes an emission-control route (ECR) that can complement the aforementioned two environmental policies. Design/methodology - This study was conducted on Korea-China trade service routes (ports of call) of regular liners. This study employed vessel-specific data, which is from an automatic identification system (AIS), for 1,728 maritime transportations performed by 387 container vessels during one year (July 1, 2021, to June 30, 2022). Performing a scenario analysis, this study analyzed the effectiveness of reduced air-pollutant emissions. Findings - This study found that the implementation of ECRs could increase average voyage time by 12.38%-25.28% but reduced air-pollutant emissions by 29.02%-43.54%. Additionally, the increase in average voyage times reduces the anchorage time of ships outside ports, providing an incentive for ship operators to voluntarily participate in compliance with regulations, thereby contributing to the establishment of a virtuous cycle of air-environmental policies related to ships. Originality/value - This study aims to verify the policy effectiveness by designing an ECR scope for liner trade routes between Korea and China. Therefore, originality and the value of this study includes conceptualizing the ECR system, analyzing its environmental performance, and exploring new policies that can be implemented while complementing existing policies.

Effect of Cementitious Materials on Compressive Strength and Self-healing Properties of Cement Mortars Containing Chitosan-Based Polymer

  • Jae-In Lee;Chae-Young Kim;Joo-Ho Yoon;Se-Jin Choi
    • Architectural research
    • /
    • v.25 no.3
    • /
    • pp.53-59
    • /
    • 2023
  • Concrete is widely used in the construction industry; however, it has the disadvantage of deteriorating durability due to cracks occurring because of climate change and shrinkage. In addition, when cement is used as a binder, CO2 emitted during the manu-facturing process accounts for ~8% of global CO2 emissions. In this study, ecofriendly cementitious materials such as blast furnace slag powder and fly ash (FA) were used as cement substitutes in the production of mortar containing a chitosan-based polymer (CP), and their fluidity, compressive strength, and self-healing performance were examined. The 28-day compressive strength of the control sample was ~32.4 MPa (the lowest for all tested samples), while that of the sample containing 5% CP and 20% FA was ~49.6 MPa (the highest for all tested samples) and ~53.1% higher than that of the control sample. Even at a healing age of 56 days, the control sample exhibited the lowest healing performance, whereas the samples containing CP (5%, 10%) and 20% FA demonstrated excellent healing performance. After 28 days, the decrease in crack size for the control sample was minimal; however, for the sample containing only cement and CP, a significant decrease in crack size was observed even after 28 days. This study confirmed that the appropriate use of CP and cementitious materials improves not only compressive strength but also the selfhealing performance of mortar.

A promising form-stable phase change material prepared using cost effective Jute stick Biochar as the matrix of stearic acid for thermal energy storage (황마 바이오차를 사용한 에너지 저장용 상변화 물질의 제조 및 성능평가에 관한 연구)

  • Adnin, Raihana Jannat;Mandal, Soumen;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.169-170
    • /
    • 2022
  • Due to the higher use of nonrenewable fossil fuel energy, environment friendly sustainable energy from waste materials is attracting attention of the researchers. Considering that, jute stick (JS) biochar has been considered for this study for ecofriendly and sustainable thermal energy storage application. Waste jute sticks (JS), which are being mainly used as a fuel for cooking purpose, have been pyrolyzed to produce porous biochar and have been used for shape stabilization of stearic acid (SA) as phase change material (PCM). SA at 1:1 ratio has been incorporated into the activated JS biochar to concoct shape-stabilized phase change composite (SAJS). The SAJS has been evaluated by different techniques such as Fourier transform-infrared spectroscope (FT-IR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The obtained composite PCM has shown excellent shape stability with a high latent heat storage, suggesting its suitability for thermal energy storage applications.

  • PDF

Effects of Antimicrobial Socks Using Hemp Stem Bark Extract Fibers on Foot Health Improvement (대마줄기껍질 추출 섬유를 활용한 항균 양말이 발 건강 개선에 미치는 영향)

  • Su-Hyun Kim;Hee-Sook Kim
    • Fashion & Textile Research Journal
    • /
    • v.26 no.2
    • /
    • pp.190-197
    • /
    • 2024
  • With increasing global interest in environmentally friendly materials and the consequent rise in demand, there is a growing need for alternatives to synthetic fibers, which can cause skin diseases and other side effects. The fashion industry is emphasizing material sustainability owing to concerns about increasing carbon emissions. Moreover, consumers express a strong desire for ecofriendly and sustainable materials. Therefore, clothing brand companies are developing eco-friendly products to enhance their corporate image. Hemp fibers are recognized for their functionality and are utilized as crucial materials in the development of eco-friendly products by global fashion companies. In this study, we produced socks that effectively improve foot health using hemp stem bark extract fibers and demonstrated the positive efficacy of natural fibers through functional and wearability evaluations. Hemp stem bark extract fibers showed 99.9% antimicrobial effectiveness against bacteria responsible for sweat-induced bacterial proliferation and odor, when blended with lyocell fibers and woven into fabric to manufacture socks. Wearability evaluations of these terry cloth socks confirmed a reduction in foot odor and fatigue among the participants with a consumer satisfaction of 4.63/5. These findings confirm the effectiveness and positive impact of the natural antimicrobial properties of hemp fibers and terry cloth structure in improving foot health.

Synthesis and Evaluation of Ecofriendly Nontoxic Cleaning Agents (무독성 친환경 세정제의 합성 및 평가에 관한 연구)

  • Kim, Jong Cheon;Ryu, Young;Hong, Yeon Heui;Kim, Seok Chan
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.548-551
    • /
    • 2014
  • In order to reduce toxicity on the human body, four new cleaning agents (1-4) containing ester and ether functionalities have been invented. The synthesized cleaning agents's physical properties, biodegradabilities, and $LD_{50}$ values, which were conducted by Korea Testing Certification Institute by using standard method, showed excellent values. A specimen for cleaning ability was prepared by cutting in $60{\times}40mm$ size of stainless steel plate. The surface of the above specimens was treated with four different kinds of contaminants, such as cutting oil, anti-rust oil, drawing oil, and lubricating oil. Contaminated specimens were then immersed in compounds (1-4) for 1 to 5 minutes to dissolve oil in the cleaning agent. The data indicate that all compounds (1-4) exhibit good cleaning ability toward four contaminant oils. It is also confirmed that these compounds can be applicable to various industrial cleaning fields as nontoxic and biodegradable cleaning agents because of their excellent biodegradabilities and $LD_{50}$ values.

Solvent Free N-Heterocyclization of Primary Amines to N-Substituted Azacyclopentanes Using Hydrotalcite as Solid Base Catalyst

  • Dixit, Manish;Mishra, Manish;Joshi, P.A.;Shah, D.O.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1457-1464
    • /
    • 2012
  • An ecofriendly catalytic route for selective synthesis of $N$-substituted azacyclopentanes, nitrogen-containing heterocyclic intermediates for many bioactive compounds, was established by carrying out $N$-heterocyclization (di $N$-alkylation) of primary amines with 1,4-dichloro butane (as dialkylating agent) using catalytic amount of hydrotalcite as solid base catalyst. The hydrotalcite was found to be efficient solid base catalyst for di $N$-alkylation of different primary amines (aniline, benzyl amine, cyclohexyl amine and n-butyl amine) giving 82 to 96% conversion (at optimized reaction condition) of 1,4-dichloro butane and > 99% selectivity of respective $N$-substituted azacyclopentanes within 30 min. under solvent free condition. The reaction parameters significantly influence the conversion of 1,4-dichloro butane to $N$-substituted azacyclopentanes. The nature of substituent present on amino group affects the reactivity of amine substrates for di $N$-alkylation reaction with 1,4-dichloro butane. The 1,4-dichloro butane was found to be highly reactive alkylating agent for di $N$-alkylation of amines as compared to 1,4-dihydroxy butane. The reusability of the catalyst and its chemical stability in the reaction was demonstrated.