• Title/Summary/Keyword: EcoDesign

Search Result 1,152, Processing Time 0.028 seconds

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

A Study on the Ship Ability Evaluation Criteria for Training-only ship through Ship Space Analysis (선박공간분석을 통한 실습전용선박의 선박능력 평가 기준에 관한 연구)

  • Park, Kitae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.100-106
    • /
    • 2022
  • Ships are built according to the purpose and operated with individual goals. Operational goals are reflected in the design of the ships and become the main criterion for determining the required ship ability. In general, cargo ships and passenger ships are objectively evaluated in terms of the operation part of the ship and the capacity part of the cargo or passenger, centering on their transportation ability. In consideration of the required ship ability, the built ship can expect effects such as economic feasibility and eco-friendliness in addition to basic characteristics such as stability. Accordingly, the concept of ship ability is expected to be effectively used in the field of training-only ship management by each institution, which plays a pivotal role in training ship-officers. In this study, the basic direction was verified for the ship ability evaluation criteria of training-only ships through the analysis of the internal space of two training-only ships of the Korea Institute of Maritime and Fisheries Technology, which were recently built with a time lag. In the process of building training-only ship or general-purpose training ship, the possibility of using the ship ability standards in securing budget and designing was derived.

Design and Fabrication of an Electronic Voltage Transformer (EVT) Embedded in a Spacer of Gas Insulated Switchgears (가스절연개폐장치의 스페이서 내장형 전자식 변압기의 설계 및 제작)

  • Lim, Seung-Hyun;Kim, Nam-Hoon;Kim, Dong-Eon;Kim, Seon-Gyu;Kil, Gyung-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.4
    • /
    • pp.353-358
    • /
    • 2022
  • Bulky iron-core potential transformers (PT) are installed in a tank of gas insulated switchgears (GIS) for a system voltage measurement in power substations. In this paper, we studied an electronic voltage transformer (EVT) embedded in a spacer for miniaturization, eco-friendliness, and performance improvement of GIS. The prototype EVT consists of a capacitive probe (CP) that can be embedded in a spacer and a voltage Follower with a high input and a low output impedance. The CP was fabricated in the form of a Flexible-PCB to acquire the insulation performance and to withstand vibration and shock during operation. Voltage ratio of the prototype EVT is about 42,270, and the frequency bandwidth of -3 dB ranges from 0.33 Hz to 3.9 MHz. The voltage ratio error evaluated at about 6%, 12% and 18% of the rated voltage of 170 kV was 0.32%, and the phase error was 12.9 minutes. These results were within the accuracy for the class 0.5 specified in IEC 60044-7 and satisfy even in ranges from 80% to 120% of the rated voltage. If the prototype EVT replaces the conventional iron-core potential transformer, it is expected that the height of the GIS could be reduced by 11% and the amount of SF6 will be reduced by at least 10%.

Sustainability Criteria Identified in the Global Sourcing Practices of Global Fashion Retailers (글로벌 패션 기업의 해외 소싱 프로세스에서 나타난 지속 가능성 기준)

  • Lee, Ji Yeon
    • Fashion & Textile Research Journal
    • /
    • v.24 no.2
    • /
    • pp.206-216
    • /
    • 2022
  • This study sought to examine the sustainability criteria found in the global sourcing practices of global fashion retailers. Sustainable supply chain management, with a particular focus on the sustainability criteria of global sourcing, was analyzed. This qualitative study was based on a focus group interview and corporate social responsibility (CSR) annual reports. Eight master categories, 18 middle categories, and 37 bottom categories were extracted. The key categories and their middle categories were as follows: (1) Social compliance (working conditions, employment, safety); (2) Environment concerns (environmental pollution management, eco-friendly production, supply chain environment); (3) Energy efficiency (energy saving program, store environment); (4) Consumer protection (restricted substances management, consumer product safety improvement); (5) Management system (code of conduct, triangle audit system); (6) Community social activities (local community service, voluntary activities, charitable activities); (7) External stakeholder engagement (media & non-governmental organization management, maintenance of relationship with local authority); (8) Brand protection (respect for companies' intellectual property). The findings of this study offer academically significant insights into the sustainability criteria that can be encountered by companies under diverse global sourcing scenarios, revealing that global sourcing by fashion retailers is not merely a means of reducing costs, but a way of generating new jobs and making a social contribution to developing countries. The study's findings also have practical significance, offering guidelines for general CSR activities in the global sourcing process.

A Basic Study on Effect Analysis of Adjacent Structures due to Explosion of Underground Hydrogen Infrastructure (지하 수소인프라 폭발에 따른 인접 구조물 영향 분석에 대한 기초 연구)

  • Choi, Hyun-Jun;Kim, Sewon;Kim, YoungSeok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.3
    • /
    • pp.21-27
    • /
    • 2022
  • For carbon neutrality, interest in R&D and infrastructure construction for hydrogen energy, an eco-friendly energy source, is growing worldwide. In particular, for hydrogen stations installed in downtown areas, underground hydrogen infrastructure are being considered to increase a safety distance from hydrogen tank explosions to adjacent structures. In order to design an appropriate location and depth of the underground hydrogen infrastructure, it is necessary to evaluate the impact of the explosion of the underground hydrogen infrastructure on adjacent structures. In this paper, a numerical model was developed to analyze the effect of the underground hydrogen infrastructure explosion on adjacent structures, and the over pressure of the hydrogen tank was evaluated using the equivalent TNT (Trinitrotoluene) model. In addition, parametric analysis was performed to estimate the stability of adjacent structures according to the construction conditions of the underground hydrogen infrastructure.

Mechanical and durability of geopolymer concrete containing fibers and recycled aggregate

  • Abdelaziz Yousuf, Mohamed;Orhan, Canpolat;Mukhallad M., Al-Mashhadani
    • Computers and Concrete
    • /
    • v.30 no.6
    • /
    • pp.421-432
    • /
    • 2022
  • Recently, the interminable ozone depletion and the global warming concerns has led to construction industries to seek for construction materials which are eco-friendly. Regarding this, Geopolymer Concrete (GPC) is getting great interest from researchers and scientists, since it can operate by-product waste to replace cement which can lead to the reduction of greenhouse gas emission through its production. Also, compared to ordinary concrete, geopolymer concrete belongs improved mechanical and durability properties. In spite of its positive properties, the practical use of geopolymer concrete is currently limited. This is primarily owing to the scarce structural, design and application knowledge. This study investigates the Mechanical and Durability of Geopolymer Concrete Containing Fibers and Recycled Aggregate. Mixtures of elastoplastic fiber reinforced geopolymer concrete with partial replacement of recycled coarse aggregate in different proportions of 10, 20, 30, and 40% with natural aggregate were fabricated. On the other hand, geopolymer concrete of 100% natural aggregate was prepared as a control specimen. To consider both strength and durability properties and to evaluate the combined effect of recycled coarse aggregate and elastoplastic fiber, an elastoplastic fiber with the ratio of 0.4% and 0.8% were incorporated. The highest compressive strength achieved was 35 MPa when the incorporation of recycled aggregates was 10% with the inclusion of 0.4% elastoplastic fiber. From the result, it was noticed that incorporation of 10% recycled aggregate with 0.8% of the elastoplastic fiber is the perfect combination that can give a GPC having enhanced tensile strength. When specimens exposed to freezing-thawing condition, the physical appearance, compressive strength, weight loss, and ultrasonic pulse velocity of the samples was investigated. In general, all specimens tested performed resistance to freezing thawing. the obtained results indicated that combination of recycled aggregate and elastoplastic fiber up to some extent could be achieved a geopolymer concrete that can replace conventional concrete.

The Effect of a Geothermal Heat Pump and Photovoltaics Application on the Building Energy Efficiency and ZEB Certification Rating for a Non-Residential Building (지열 열펌프 및 태양광 발전 적용이 비주거용 건물의 에너지효율등급과 ZEB 인증 등급에 미치는 영향)

  • Geon Ho Moon;Chang Yong Park
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.19 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Many government in the world have conducted building energy performance certification program to reduce building energy consumption. In this study, a reference building and its HVAC system was modeled, and the energy load and consumption were estimated by the ECO2 program. The software is a simple building energy simulation program based on monthly calculated method. The building energy efficiency rating the the reference building was 1+ under baseline condition. The simulation results showed that the insulation performance slightly affected building energy load and consumption, but light density had a significant effect on them. The application of geothermal heat pumps gave improvement of building energy efficiency rating but it could not make it possible to get zero energy building(ZEB) certification. The ZEB 5 certification could be achieved by using photovoltaics, however getting better grade was difficult. The simulation results showed that the ZEB 4 certification, one grade higher than ZEB 5, could be attained by using more than one renewable energy source such as geothermal and solar energy in this study.

Unstable Behavior and Critical Buckling Load of a Single-Layer Dome using the Timber Elements (목재를 이용한 단층 지오데식 돔의 불안정 거동과 임계좌굴하중)

  • Hong, Seok-Ho;Ha, Hyeonju;Shon, Sudeok;Lee, Seungjae
    • Journal of Korean Association for Spatial Structures
    • /
    • v.23 no.2
    • /
    • pp.19-28
    • /
    • 2023
  • Timber structures are susceptible to moisture, contamination, and pest infestation, which can compromise their integrity and pose a significant fire hazard. Despite these drawbacks, timber's lightweight properties, eco-friendliness, and alignment with current architectural trends emphasizing sustainability make it an attractive option for construction. Moreover, timber structures offer economic benefits and provide a natural aesthetic that regulates building temperature and humidity. In recent years, timber domes have gained popularity due to their high recyclability, lightness, and improved fire resistance. Researchers are exploring hybrid timber and steel domes to enhance stability and rigidity. However, shallow dome structures still face challenges related to structural instability. This study investigates stability problems associated with timber domes, the behavior of timber and steel hybrid domes, and the impact of timber member positioning on dome stability and critical load levels. The paper analyzes unstable buckling in single-layer lattice domes using an incremental analysis method. The critical buckling load of the domes is examined based on the arrangement of timber members in the inclined and horizontal directions. The analysis shows that nodal snapping is observed in the case of a concentrated load, whereas snap-back is also observed in the case of a uniform load. Furthermore, the use of inclined timber and horizontal steel members in the lattice dome design provides adequate stability.

A Study on the Standard Method to Calculate Recyclability Rate of Electrical and Electronic Equipments (전기전자제품의 재활용가능률 표준산정방법에 관한 연구)

  • Yi, Hwa-Cho;Kang, Hong-Yun;Shim, Kang-Sik;Kim, Jin-Han;Sim, Jae-Sul
    • Clean Technology
    • /
    • v.15 no.1
    • /
    • pp.23-30
    • /
    • 2009
  • European directive DIRECTIVE 2002/96/EC requires the minimum recycling & recovery rate on the waste electrical and electronic equipments (WEEE). But, they do not have guidelines on the calculation methods for recycling and recovery rate. A standard method to calculate recyclability and recoverability rate of products in the designing stage is necessary for the manufacturers so that they can reflect the calculated result to the improvement of product design. In this work, we investigated the existing calculation methods for the recycling and recovery rates of WEEE and the recyclability and recoverability rates of electrical and electronic equipments (EEE). A method for the calculation of recyclability and recoverability rates for the EEE products in the development stage was developed. The newly-developed calculation method was applied to some EEE products and the calculated results were evaluated.

Structure, Alpha and Beta Diversity of Natural Forest Areas in Eco-Zones of Taraba State, Nigeria

  • Dau Henry, Japheth;Bunde Bernard, Meer
    • Journal of Forest and Environmental Science
    • /
    • v.39 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • To understand the health conditions and growth patterns of forest estate for environmental resilience and climate change mitigation, assessment of structure and species diversity is paramount. This study aimed at assessing the structure, alpha, and beta diversities of tree species in three ecological zones in Taraba, Nigeria for management purposes. In recent time, no research has been reported on the structure and beta diversity of the study areas. A systematic sampling design was used for data collection. Five sample plots of 50×50 m were laid in each of the six natural forest areas. The result showed a mean DBH (42.5 cm) and a tree height (15.0 m) from the forests. The forests have a structure of an inverse "J-shape," which is typical of natural forests in the tropics. The southern Guinea savanna zone had the highest mean Shannon-Weiner diversity index (2.8). The least beta diversity index (0.02) was between Baissa and Jen Gininya forest areas. Baissa and Bakin Dutse Protected Forest Areas (PFAs) contained 76.5% of the tree species. There is a high chance of all tree species to be found in these 2 forest areas. Proximity to a location influences how similar two tree species are, according to the least beta diversity index (0.02) recorded. The Federal Government's method of management for the forest, known as Gashaka Gumti National Park, may be responsible for the high beta diversity index in the Montane ecozone. Therefore, it should be strongly encouraged to practice strict oversight of natural areas, as their contributions to reducing climate change in Taraba State, Nigeria, cannot be overstated.