• Title/Summary/Keyword: Eco-friendly control

Search Result 436, Processing Time 0.023 seconds

A Study on Application of High Molecular Compound for Development of Eco-friendly Concrete (친환경 콘크리트 개발을 위한 고분자 화합물의 적용에 관한 연구)

  • Ryou, Jae Suk;Lee, Yong Soo;Song, Il Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.299-305
    • /
    • 2012
  • The objective of this paper is to obtain the basic data in order to develop an eco-friendly concrete through evaluation on the properties of polymer cement mortar and concrete using PVAc (Polyvinyl Acetate), as a kind of water-soluble polymer. For this purpose, the physical properties of cement mortar and concrete which does not contain the PVAc as the control batch were compared and analyzed with those using the PVAc. And then, the replacement amount of the PVAc was 3%, 6%, 9% and 12% by binder, respectively. And also, the properties of concrete using the PVAc were evaluated, by adding an antifoaming agent in order to control the air contents increasing with an increase of amount of polymer usage. As a result, in the case of polymer cement mortar using the PVAc, it presented that the compressive strength reduced, while the performance of flexural strength and drying shrinkage increased. When the replacement of the PVAc was 6% within concrete, the compressive, tensile, flexural strength and elastic modulus were increased.

Analysis of Development Trends on Bio-based Environmental Transformers Oils in Power Sector (전력분야의 바이오 기반 친환경 전기 절연유 적용에 관한 개발 동향 분석)

  • Kim, Jae-Kon;Min, YoungJe;Kim, Mock-Yeon;Kwark, ByeongSub;Park, Hyunjoo
    • Tribology and Lubricants
    • /
    • v.38 no.2
    • /
    • pp.41-52
    • /
    • 2022
  • Mineral electrical insulating oil, which is widely used in transformers, exhibits excellent cooling performance and transformer efficiency. However, given that it is composed of petroleum-based components, it is weak in terms of biodegradability. This causes environmental problems in case of leakage and a low flash point, which is a factor that would cause great damage in the event of a fire in a substation. In this context, the use of eco-friendly electric insulating oil composed of bio-based vegetable oil and synthetic ester, which has excellent biodegradability and flame retardancy performance, has recently been expanded to the field of electric power, and various research and development (R&D) studies are in progress. According to different research results, vegetable oil and synthetic ester manufacturing technology, thermal stability, oxidation stability, property change, and quality control, which are characteristics of eco-friendly electrical insulating oils, are major factors affecting the maintenance of insulating oil properties. In addition, power companies have established and operated quality control standards according to the use of eco-friendly electrical insulating oil as they expand the exploitatoin of renewable energy in electricity production. In particular, deterioration and oxidation characteristics were jointly identified in R&D as an important influencing factor according to the content of saturated and unsaturated fatty acids present in vegetable oils and synthetic esters in power transformer applications.

Comparison of Treatment Effect of Domestically Distributed Major Silage Inoculant

  • Young Sang Yu;Yan Fen Li;Xaysana Panyavong;Li Zhunang Wu;Jeong Ung Hwang;Li Li Wang;Hak Jin Kim;Won Jin Lee;Jong Geun Kim
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.44 no.1
    • /
    • pp.50-57
    • /
    • 2024
  • Silage inoculants, crucial in modern silage production, comprise beneficial microorganisms, primarily lactic acid bacteria (LAB), strategically applied to forage material during ensiling. This study aimed to compare the effectiveness of various inoculants produced by different companies. Five treatments were evaluated, including a control group: T1 (Lactobacillus plantarum), T2 (Lactobacillus plantarum + Pediococcus pentosaceus), T3 (Lactobacillus plantarum + Pediococcus pentosaceus + Lactobacillus buchneri), T4 (Lactobacillus plantarum + Lactobacillus acidophilus + Lactobacillus bulgaricus), and T5 (Lactobacillus plantarum + Pediococcus pentosaceus + Enterococcus faecium). Italian ryegrass was harvested at the heading stage and treated with these silage inoculants. Samples were collected over a 60-day ensiling period. Co-inoculation with L. plantarum and P. pentosaceus (T2) resulted in significantly higher CP compared to the control group co-inoculation exhibited with resulted in Lactobacillus plantarum and Pediococcus pentosaceus in the T2 treatment exhibited higher CP content of 106.35 g/kg dry matter (DM). The T3 treatment, which included heterofermentative bacterial strains such as Lactobacillus buchneri, exhibited an increase in acetic acid concentration (11.15 g/kg DM). In the T4 treatment group, which utilized a mixed culture of Lactobacillus acidophilus and Lactobacillus bulgaricus, the NH3-N/TN content was observed to be the lowest (20.52 g/kg DM). The T5 containing Enterococcus faecium had the highest RFV (123) after 60 days. Expanding upon these findings, the study underscores not only the beneficial effects of particular inoculant treatments on silage quality but also underscores the potential of customized inoculation strategies in maximizing nutrient retention and overall silage preservation.

Recent Trends in Studies on Botanical Fungicides in Agriculture

  • Yoon, Mi-Young;Cha, Byeongjin;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • Plants are attacked by various phytopathogenic fungi. For many years, synthetic fungicides have been used to control plant diseases. Although synthetic fungicides are highly effective, their repeated use has led to problems such as environmental pollution, development of resistance, and residual toxicity. This has prompted intensive research on the development of biopesticides, including botanical fungicides. To date, relatively few botanical fungicides have been registered and commercialized. However, many scientists have reported isolation and characterization of a variety of antifungal plant derivatives. Here, we present a survey of a wide range of reported plant-derived antifungal metabolites.

Development of Controlled Gas Nitriding Furnace : Controlled Gas Nitriding Technology and Present Situation in Korea (질화포텐셜 제어 가스질화로 개발(I) : 제어질화 및 국내 기술 현황)

  • Won-Beom Lee;Sukwon Son
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.40-46
    • /
    • 2023
  • Controlled nitriding is a technology that controls the nitriding potential based on the gas partial pressure received through an IOT-based sensor. Controlled nitriding is characterized by easy control of the phase of the nitride compound and excellent reproducibility of quality. In particular, it is possible to form a compound layer of excellent quality with fewer pores on the surface. However, despite these advantages, the application of controlled nitriding still needs to be improved in Korea. This paper explains the characteristics of controlled nitriding and describes the future direction and the problems of controlled nitriding in Korea.

Mechanical Properties and Flexural Behavior of Recycled PET Fiber Reinforced Eco-Friendly Hwang-toh Concrete (재생 PET 섬유로 보강된 친환경 황토 콘크리트의 역학적 특성과 휨 거동)

  • Kim, Sung-Bae;Yi, Na-Hyun;Kim, Hyun-Young;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.152-159
    • /
    • 2010
  • Recently, the public interest in eco-friendly material and structure has been increasing and many Hwang-toh researches are being actively performed. Hwang-toh is one of the traditional environment friendly construction materials used as a construction and plastering material. Hwang-toh has many advantages as construction material due to its high heat storage capacity, auto-purification, antibiotic ability, and infrared ray emission characteristics. But, currently it has not been developed into construction material and used in modern construction due to its low strength and dry shrinkage cracking prone characteristics. According to the recent researches and study results, Hwang-toh can be used as a natural pozzolanic material like fly-ash or pozzolan. In this study, mechanical properties and structural flexure behavior experiments of slag, recycled PET fiber, and Hwang-toh added concrete are carried out. The test results showed that drying shrinkage of concrete mixed with Hwang-toh has lower compressive strength and elastic modulus than those of control cement concrete specimen, but it has the similar flexural behavior in reinforced concrete beams.

Eco-Friendly Light Emitting Diodes Based on Graphene Quantum Dots and III-V Colloidal Quantum Dots

  • Lee, Chang-Lyoul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.65-65
    • /
    • 2015
  • In this talk, I will introduce two topics. The first topic is the polymer light emitting diodes (PLEDs) using graphene oxide quantum dots as emissive center. More specifically, the energy transfer mechanism as well as the origin of white electroluminescence in the PLED were investigated. The second topic is the facile synthesis of eco-friendly III-V colloidal quantum dots and their application to light emitting diodes. Polymer (organic) light emitting diodes (PLEDs) using quantum dots (QDs) as emissive materials have received much attention as promising components for next-generation displays. Despite their outstanding properties, toxic and hazardous nature of QDs is a serious impediment to their use in future eco-friendly opto-electronic device applications. Owing to the desires to develop new types of nanomaterial without health and environmental effects but with strong opto-electrical properties similar to QDs, graphene quantum dots (GQDs) have attracted great interest as promising luminophores. However, the origin of electroluminescence (EL) from GQDs incorporated PLEDs is unclear. Herein, we synthesized graphene oxide quantum dots (GOQDs) using a modified hydrothermal deoxidization method and characterized the PLED performance using GOQDs blended poly(N-vinyl carbazole) (PVK) as emissive layer. Simple device structure was used to reveal the origin of EL by excluding the contribution of and contamination from other layers. The energy transfer and interaction between the PVK host and GOQDs guest were investigated using steady-state PL, time-correlated single photon counting (TCSPC) and density functional theory (DFT) calculations. Experiments revealed that white EL emission from the PLED originated from the hybridized GOQD-PVK complex emission with the contributions from the individual GOQDs and PVK emissions. (Sci Rep., 5, 11032, 2015). New III-V colloidal quantum dots (CQDs) were synthesized using the hot-injection method and the QD-light emitting diodes (QLEDs) using these CQDs as emissive layer were demonstrated for the first time. The band gaps of the III-V CQDs were varied by varying the metal fraction and by particle size control. The X-ray absorption fine structure (XAFS) results show that the crystal states of the III-V CQDs consist of multi-phase states; multi-peak photoluminescence (PL) resulted from these multi-phase states. Inverted structured QLED shows green EL emission and a maximum luminance of ~45 cd/m2. This result shows that III-V CQDs can be a good substitute for conventional cadmium-containing CQDs in various opto-electronic applications, e.g., eco-friendly displays. (Un-published results).

  • PDF

Development of an Efficient Bioassay Method to Evaluate Resistance of Chili Pepper Cultivars to Ralstonia solanacearum (고추 풋마름병에 대한 효율적인 저항성 검정법 확립)

  • Hwang, Sung Min;Jang, Kyoung Soo;Choi, Yong Ho;Kim, Hun;Choi, Gyung Ja
    • Research in Plant Disease
    • /
    • v.23 no.4
    • /
    • pp.334-347
    • /
    • 2017
  • Bacterial wilt caused by Ralstonia solanacearum is an important disease in cultivation of chili pepper, causing plant death and significant yield losses. Cultivation of disease-resistant varieties is the most suitable measure to control bacterial wilt of chili pepper. To establish an efficient screening method for resistant chili pepper to R. solanacearum, six resistant or susceptible cultivars to the R. solanacearum were selected and the development of bacterial wilt on the cultivars according to several conditions was investigated. Drenching bacterial suspension into the cut roots using a scalpel was more simple and effective to distinguish resistant and susceptible cultivars than inoculation methods of root-dipping or soil-drenching without wounding. A resistant pepper, 'MC4' to R. solanacearum showed high resistance under the developed conditions which were 21- to 28-day-old pepper inoculated with $1{\times}10^8cfu/ml$ of bacterial suspension. On the other hands, the susceptible cultivars represented high disease severity under the conditions. These results indicated that we developed an efficient method to evaluate resistance of chili pepper cultivars against bacterial wilt. In addition, we successfully evaluated resistance degree of 140 commercial chili pepper cultivars to R. solanacearum using the developed method.

Influence of Pre-treated Eco-friendly Agricultural Materials on Control Efficacy of Isaria javanica Isolate against Sweet Potato Whitefly (Bemisia tabaci) (친환경 농자재와 곤충병원성 곰팡이 Isaria javanica의 처리 간격이 담배가루이(Bemisia tabaci) 방제에 미치는 영향)

  • Lee, Byung-Ju;Han, Ji-Hee;Huang, Jeong-Hwa;Kim, Jeong-Jun;Lee, Sang-Yeob
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.631-642
    • /
    • 2017
  • For effective control of insect pest which can outbreak in a field during crop cultivation, various control agents such as eco-friendly agricultural materials (EFAM) including microbial control agents and chemical pesticides have been applied at fields and these control agents may be treated simultaneous or sequential in the same field to suppress diverse pests and diseases. The agents may influence each other and control efficacy may also differ from interactions. Therefore we need to test compatibility of microbial control agents with other agricultural agents. In this study, we investigated influence of pre-treated EFAMs, which are registered for whitefly control in greenhouse, on germination, mycelial growth and control efficacy of Isaria javanica isolate against sweet potato whitefly. The results showed that a mixture of paraffin oil+cinnamon oil among 4 EFAMs highly reduced germination ($8.9{\pm}1.3%{\sim}24.5{\pm}0.9%$) and mycelial growth ($0.81{\pm}0.01cm{\sim}0cm$) of I. javanica. To investigate the effects of the treatment interval between EFAMs and I. javanica on sweet potato whitefly control, four different EFAMs were pre-treated 0, 1, 4, and 7 days before applying I. javanica. Pre-treatment of four EFAMs inhibited insecticidal activity of I. javanica against sweet potato whitefly. Therefore when EFAMs and a mycopesticide using I. javanica spray simultaneous or sequential, application of EFAMs need more than 7 days interval after treatment of mycopesticide at field.

Eco-frendly Control of Culex pipiens (mosquito) Larvae by Acorus calamus (sweet flag) and Acorus gramineus (Grassy-leaved sweet flag) Extracts

  • Choi, Jeong-Keun;Lee, Ji-Yeon;Lee, Ja-Hyun;Lee, Seong-Gene;Han, Yeon-Soo;Han, Tae-Ho
    • Korean Journal of Plant Resources
    • /
    • v.19 no.6
    • /
    • pp.721-726
    • /
    • 2006
  • Mosquitoes are carriers of malaria and encephalitis. This study performed for eco-friendly control of mosquitos by using genus Acorus. Several solvents were used for the extraction of genus Acorus; water, ethanol, and methanol. Grinded leaves and roots were also included. Acorus extracts killed mosquito larvae and the ethanol extract showed the best result. Autoclaved Acorus water needed long time to kill mosquito larvae. $LT_{50}$ of 1 % Acorus calamus decoction was 13.6 hrs and 1 % autoclaved Acorus water was 53.6 hrs. $LT_{50}$ of 0.05% Acorus calamus rhizome powder was 28.5 hrs. $LT_{50}$ of 0.5% Acorus calamus leaf powder was 10.8 hrs. $LT_{50}$ of 0.1 % Acorus calamus decoction was 63.4 hrs and 0.1 % Acorus calamus ethanol extracts was 48.6 hrs and 0.1% Acorus calamus methanol extracts was 53.9 hrs. $LT_{50}$ of 0.4% Acorus gramineus decoction was 45.5 hrs, 0.4% ethanol extracts was 10.9 hrs, 0.4% methanol extracts was 10.2 hrs. $LT_{50}$ of ethanol extracts was shorter than other extracts. Acorus calamus rhizome powder could be used for the eco-friendly control of the mosquito larvae.