• 제목/요약/키워드: Eco-drive

Search Result 45, Processing Time 0.029 seconds

Optimized Strategy of Neighborhood Electric Vehicle with Driving Schedules (도심주행 패턴에 따른 소형 전기자동차 최적화 전략)

  • Kil, Bum-Soo;Cho, Chong-Pyo;Pyo, Young-Dug;Kim, Gang-Chul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2010
  • The Developing & Producing of Eco-Friendly vehicle have been more incremented, as People appreciate the importance of Earth Environment Conservation. The needs of Neighborhood Electric Vehicle(NEV) that suits Current people's short drive distance is incremented. In this Paper, we define Neighborhood Electric Vehicle through out National Highway Traffic Safety Administration of United States of America's regulation and explain motor and battery of primary constituents of that. We used MATLAB and ADVISOR 200 programs for Simulation, and propsed NEV's Model that tow people can be got in. In this Model, the battery is Lead-acid battery(72V, 85Ah) and the motor is 8kW permanent magnet synchronous motor(PM motor). We compared change of driving range of NEV through out non-changing speed Driving(10km/h, 20km/h, 30km/h, 40km/h) and Manhattan driving schedule.

Transient Characteristic Analysis on the Regenerative Braking System of Fuel-cell Electric Vehicle with Electro-Hydraulic Brake (전기유압식 브레이크를 장착한 연료전지차량의 회생제동 천이구간 특성해석)

  • Choi, Jeong-Hun;Cho, Bae-Kyoon;Park, Jin-Hyun;Hwang, Sung-Ho
    • Journal of Drive and Control
    • /
    • v.9 no.1
    • /
    • pp.1-9
    • /
    • 2012
  • Nowadays, various researches about eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. Since most of these green cars have electric motors, the regenerative energy technology can be used to improve the fuel economy and the energy efficiency of vehicles. The regenerative brake is an energy recovery mechanism which slows a vehicle by converting its kinetic energy into electric energy, which can be either used immediately or stored until needed. This technology plays a significant role in achieving the high energy usage. However, there are some technical problems for controlling the regenerative braking and the electro-hydraulic brake during switching at transient region. In this paper, the performance simulator for fuel-cell vehicle is developed and transient response characteristics of the regenerative braking system are analyzed in the various driving situations. And the hardware-in-the-loop simulation of electro-hydraulic brake is performed to validate the transient characteristics of the regenerative braking system for fuel-cell electric vehicle.

Analysis of Joule-heat Characteristics according to the DC-link Capacitor Film Geometrics (DC-link Capacitor필름 형상에 따른 Joule-heat특성 분석)

  • Jeon, Yong Won;Kim, Young Shin;Jeon, Euy Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.1
    • /
    • pp.42-48
    • /
    • 2020
  • As global warming accelerates, eco-friendly electric cars are being developed to reduce carbon dioxide emissions, and power conversion inverters are used to drive motors. Among inverter components, DC-link capacitor is heated by high current usage, which causes problems such as performance and life-saving of inverter. Although metal cases with good thermal performance have been used to solve this problem, it is difficult to apply them in practice due to insulation problems with other parts. In this paper, the Heat-Generation influence factor of DC-link capacitor is analyzed. Variables on heat-generation are set at 3 levels for film width, inductance, and film thickness. Box-Behnken to 13 tests using the design and minimal deviations, e.g. through the experiment three times by each level. The surface of the film k type by attaching the sensor current is measured temperature. Capacitance was set to a minimum level of 200 ㎌ and had a frequency of 16 kHz with Worst case, ambient temperature of 85℃ and a ripple current of 50 Ams was applied. The temperature at the measurement point was collected in the data logger after sampling at 1 minute intervals for 2 hours after saturation with the ambient temperature. This experiment confirmed that setup factors are correlated with heat-generation.

Analysis of Fault Diagnosis of Regenerative Braking System for Fuel Cell Vehicle with EMB System (전기기계 브레이크가 적용된 연료전지 자동차의 회생제동 시스템의 고장해석)

  • Song, H.Y.;Choi, J.H.;Hwang, S.H.;Jeon, K.K.;Choi, S.J.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.8-13
    • /
    • 2012
  • Recently, researches about the eco-friendly vehicles such as hybrid electric vehicle, fuel cell vehicle and electric vehicle have been actively carried out. The regenerative braking system is a key technology to improve the vehicle energy utilization efficiency because it transforms the kinetic energy to the electric energy through the electric motor. This new braking system requires cooperative control between electric controlled brake and regenerative brake. Therefore, it is necessary to establish fault-diagnosis and fail-safe evaluation criteria to secure reliability of the regenerative braking system. In this paper, the failure types and causes in regenerative braking system were analyzed. The transient behavior characteristics were examined based on fault-diagnosis and fail-safe upon failure of regenerative braking system.

Development of Eco-Friendly Range Extension UTV Hybrid Vehicle System (주행거리 확장을 위한 하이브리드형친환경UTV 차량 시스템 개발)

  • Kim, Kee Joo;Won, Si Tae
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.12
    • /
    • pp.1015-1020
    • /
    • 2016
  • An advantage of electric vehicles is that they are environmentally sustainable because they do not emit exhaust gases, such as $CO_2$ or Nox. A disadvantage is the low power performance of the motor and battery source, necessitating a reduction in the weight of the vehicle to increase efficiency. Another disadvantage is that the rechargeable battery enables an electric vehicle to only run for a limited number of miles before requiring electric charging. To solve these problems, the hybrid vehicle has been developed by combining environmental sustainability with the high performance of a conventional internal combustion engine. In this study, an electric UTV (Utility Terrain Vehicle) was transformed into a hybrid vehicle system by outfitting the vehicle with a drive auxiliary power system including a 125 cc internal combustion engine. This modification enabled us to extend the range of the hybrid UTV from 50km to 100km per one electric charging.

CVT system applied pulley consisting of the basic disk and rotational disk

  • Sien, Dong-Gu
    • International journal of advanced smart convergence
    • /
    • v.11 no.3
    • /
    • pp.206-214
    • /
    • 2022
  • Automobile manufacturers in each country are spurring the development of electric vehicles that use electric energy, an eco-friendly energy, as a futuristic vehicle. Electric vehicles have the advantage of no harmful gas or environmental pollution and low noise. Unlike automobiles using existing internal combustion engines using fossil fuels, electric vehicles use the electricity of batteries to cause rotational motion of motors. In the electric vehicle driven by the motor, it is indispensable to develop a controller for controlling the motor. One of the areas where automobile manufacturers are concentrating is the development of small electric vehicles as a personal transportation means. Small electric vehicles such as electric motorcycles, one-seat electric vehicles and two-seat electric vehicles are expanding the market as a means of operating throughout the city. In the domestic road conditions with many hills, it is effective to have a separate transmission system for small electric vehicles to drive smoothly. In this study, we propose a new type of continuously variable transmission(CVT) system to ensure that small electric vehicles can be driven smoothly in hilly domestic terrain. The proposed CVT system is equipped with a basic disk and a rotational disk in the driving pulley and the driven pulley, respectively, and is applied with a sloping spline to rotate the rotational disk. To commercialize the proposed CVT system, an experimental device was developed to examine the power transmission efficiency and the configuration of the CVT system was proposed.

Developing a Cooling System for Fuel Cell Stacks Combined with Heat Pump Technology Using 1-D Simulation (1-D 시뮬레이션을 이용한 히트펌프 기술과 결합된 연료전지 스택용 냉각 시스템 개발)

  • Sang-Min Chung;Dong Gyu Park;Minsu Kim;Sung-wook Na;Seung-Jun Lee;Oh-Sung Kwon;Chul-Hee Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2024
  • This paper proposes a novel cooling system for hydrogen fuel cell cooling systems by integrating heat pump technology to enhance operational efficiency. The study analyzed the cooling efficiency of the fuel cell cooling system. With the increasing focus on eco-friendly vehicle technologies to address environmental concerns and global warming, the transportation sector, a major contributor to greenhouse gas emissions, needs technological enhancements for better efficiency. The proposed cooling system was modeled through 1-D simulations. The analysis results of parameters such as thermal balance, temperature, and pressure of each component confirmed the stable operation of the system. By examining variations in the cooling system's flow rate, compressor RPM, and the Coefficient of Performance (COP) based on different refrigerants, initial research was conducted to derive optimal operating conditions and parameter values.

A TBM data-based ground prediction using deep neural network (심층 신경망을 이용한 TBM 데이터 기반의 굴착 지반 예측 연구)

  • Kim, Tae-Hwan;Kwak, No-Sang;Kim, Taek Kon;Jung, Sabum;Ko, Tae Young
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.1
    • /
    • pp.13-24
    • /
    • 2021
  • Tunnel boring machine (TBM) is widely used for tunnel excavation in hard rock and soft ground. In the perspective of TBM-based tunneling, one of the main challenges is to drive the machine optimally according to varying geological conditions, which could significantly lead to saving highly expensive costs by reducing the total operation time. Generally, drilling investigations are conducted to survey the geological ground before the TBM tunneling. However, it is difficult to provide the precise ground information over the whole tunnel path to operators because it acquires insufficient samples around the path sparsely and irregularly. To overcome this issue, in this study, we proposed a geological type classification system using the TBM operating data recorded in a 5 s sampling rate. We first categorized the various geological conditions (here, we limit to granite) as three geological types (i.e., rock, soil, and mixed type). Then, we applied the preprocessing methods including outlier rejection, normalization, and extracting input features, etc. We adopted a deep neural network (DNN), which has 6 hidden layers, to classify the geological types based on TBM operating data. We evaluated the classification system using the 10-fold cross-validation. Average classification accuracy presents the 75.4% (here, the total number of data were 388,639 samples). Our experimental results still need to improve accuracy but show that geology information classification technique based on TBM operating data could be utilized in the real environment to complement the sparse ground information.

Study on Chemical Stabilities with R-1234yf Refrigerant of Polyol Ester Refrigerant Oil for Electric Vehicles (전기 자동차용 폴리올 에스테르계 냉동기유의 R-1234yf 냉매와의 적합성 연구)

  • Hong, J.S.;Chung, K.W.;Kim, N.K.;Shin, J.H.;Kim, Young Woon;Lee, E.H.;Go, B.S.;Hwang, S.Y.
    • Tribology and Lubricants
    • /
    • v.36 no.3
    • /
    • pp.139-146
    • /
    • 2020
  • Global warming has led to an increase in demand of eco-friendly vehicles, such as electric cars, for reducing greenhouse gas emissions, and especially, regulating carbon dioxide generation. In addition, electric vehicles are equipped with an electric drive-type hermetic scroll compressor and a refrigerant, which exhibit current and future trends of using environmentally friendly refrigerants, including R-1234yf. In this study, polyol ester-based refrigeration oils are prepared via condensation esterification of polyol and fatty acids. The oils can be combined with R-1234yf refrigerant for applications in air conditioning and cooling systems of electric vehicles. The structure of synthetic polyol esters is confirmed via 1H-NMR and FT-IR spectrum analysis, and the composition of the polyol ester is analyzed via gas chromatogram analysis. Furthermore, kinematic viscosity, viscosity index, total acid value, pour point, and color are analyzed as fundamental physical properties of the synthetic polyol esters. The compatibility and chemical stability of the synthetic polyol ester combined with the R-1234yf refrigerant are obtained via high temperature and high pressure oil-resistant refrigerant tests. The changes in the oil color and catalyst activity are observed before and after the experiment to determine whether it is suitable as a refrigerator oil.

A Methodology for Evaluating the Effects of Transportation Policies Related to Greenhouse Gas Reduction (교통온실가스 감축정책의 효과분석 방법론 연구)

  • LEE, Kyu Jin;YI, Yongju;CHOI, Keechoo
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.1-12
    • /
    • 2018
  • The purpose of this study is to establish a methodology for evaluating quantitative effects of transportation GHG (greenhouse gas) reduction-related policies that were implemented based on the reduction goals of transportation GHG and effective implementation plans. This study uses a modal utility function and demand estimation models as well as a GHG emission basic unit estimation model by each transportation mode based on actual traffic and emission data. The results showed that the effects of GHG reduction policies such as electric vary from region to region, and from vehicle to vehicle. It is also confirmed that an eco-drive promotion policy, one of the lowest budget policies, is expected to contribute to high reduction in GHG. In addition, not only automobile emission improvement policies but also the promotion policies of public transportation are expected to highly reduce GHG as confirmed quantitatively in this study. The results of this study are expected to be useful for national and local governments' evaluation of GHG reduction policies to cope with the post 2020.