• Title/Summary/Keyword: Eco Industrial Park(EIP)

Search Result 18, Processing Time 0.035 seconds

A study for the design of EIP and by-product exchange network (한국형 생태산업단지 구축 및 자원화 순환망 구축에 관한 연구)

  • Lim, Chang-ho;Rhee, Dong-Seok
    • Journal of Industrial Technology
    • /
    • v.29 no.B
    • /
    • pp.95-100
    • /
    • 2009
  • Recently, SID (Sustainable Industrial Development) or green growth is the major concern of industries. EIP (Eco Industrial Park) is one of the important part of SID which aims to improve eco-efficiency of resources such as material, energy and water. In this study, current status of Banwol & Sihwa industrial complex relating EIP was investigated and the plan to design of Banwol & Sihwa EIP was suggested.

  • PDF

The Improving Direction of Korean Eco-Industrial Park Construction Project (한국 생태산업단지 구축사업의 개선방향)

  • Kong, Hyung-Ok;Ko, Jae-Cheol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.28 no.4
    • /
    • pp.418-430
    • /
    • 2011
  • This study was conducted to provide an improving direction of K-EIP(Korean Eco-Industrial Park) construction project by company's voluntary participation. For this purpose, we investigated and analyzed the status of domestic eco-industrial park projects from various literatures, foreign EIP cases and FGI(Focus Group Interview). The key issues to construct a voluntary K-EIP are the lack of experts, the difficulties of commercialization financing, and so on. In this study, therefore, the programs to resolve these problems in K-EIP construction project were suggested at the level of government and corporation.

Modeling of Eco-Industrial Park (EIP) through Material Flow Analysis (MFA) (물질흐름분석을 통한 생태산업단지의 모델링)

  • Lee, Seungjun;Yoo, ChangKyoo;Choi, Sang Kyo;Chun, Hee Dong;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.579-587
    • /
    • 2006
  • Recently, each country has been trying to promote Eco-Industrial Park (EIP) development for industrial sustainability. Technological modeling is required to realize EIP practically even though the project contains the political concerns for many companies, government, and self-governing bodies. The four main technologies of the EIP developments include energy exchange, material flow analysis, water pinch, and life cycle assessment. Material flow analysis (MFA) methodology can be utilized in EIP modeling in view of the fact that the analysis of material flows and the optimized modeling are major purposes for the technological modeling of EIP. Through MFA methodology in POHANG EIP project, how to apply MFA modeling to EIP modeling and how to utilize software for MFA modeling are shown in this research.

Eco-Industrial Park (EIP) Development and Key Technologies for Clean Production (청정 생산을 위한 생태산업단지 구축과 주요기술)

  • Yoo, ChangKyoo;Heo, Soon-Ki;Yoo, Dong Joon;Lee, SeungJun;Shin, Ji Na;Park, Yong Joon;Yoon, Hack Mo;Chun, Hee Dong;Moon, Jeong Ki;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.549-559
    • /
    • 2005
  • Sustainable industrial development which can minimize an ecological effect by the mankind exertion is recently interested due to an environmental contamination and a resource exhaustion problem. An eco-industrial park (EIP) is a community of manufacturing and service businesses seeking enhanced environmental and economic performance through collaboration in managing environmental and resource issues, including energy, water, and materials. EIP developments which improve a production plant within an eco-friendly greenfield and design a new industrial ecosystem are accomplished recently, which can efficiently re-use the waste and resources from each company within EIP. In this review, the outside and domestic case studies of EIP and cornerstone technologies to develop the EIP, such as energy integration, waste reuse, mass flow analysis, water pinch, and life cycle assessment, are summarized.

Agent-Based Modeling and Design of Water Reuse Network in Eco-Industrial Park (EIP) (생태산업단지에서 용수재이용 네트워크의 에이전트 기반 모델링 및 설계)

  • Kim, HyunJoo;Yoo, ChangKyoo;Ryu, Jun-Hyung;Lee, In-Beum
    • Korean Chemical Engineering Research
    • /
    • v.46 no.2
    • /
    • pp.369-375
    • /
    • 2008
  • To achieve zero-emission, one of the main goals of an eco-industrial park (EIP), it is needed to develop an effective water exchange network. The network includes various subsystems and decision making processes, which make the modeling process extremely complicated. Agent-based modeling was used to simulate water exchange network in an EIP. Firm agents were created based on the behavior pattern of firms, and an agent-based model (ABM) was made with the agents, showing the growth of the exchange network. An existing steel and iron making industrial park was chosen as a case study, and the ABM model shows eco-efficient behavior with a decreased environmental cost. Water reuse network based on the ABM model results in 35% decrease of the fresh water supply and 50% reduction of the wastewater generation in EIP. A case study shows that agent-based model can be a powerful tool in modeling and designing complex eco-industrial parks, especially when a part of the system needs to be changed.

Optimization of Water-Reusing Network among the Industries in an Eco-Industrial Park Complex Using Water Pinch Technology (워터핀치기술을 이용한 생태산업단지 내 기업간 용수 재이용망 최적화)

  • Kim, Young-Soo;Kim, Hyun-Joo;Lee, In-Beum;Yoo, Chang-Kyoo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.11
    • /
    • pp.1165-1173
    • /
    • 2008
  • An water-reuse network design has drawn attention as a systematic method of reducing fresh water usage and increasing water-using efficiency. The final goal of an eco-industrial park(EIP) is accomplishing industrial sustainability and constructing water-reuse network can be a solution. When designing water-reuse network connecting various processes which consume water, the water pinch technology can be used frequently, since it simultaneously minimize freshwater usage and wastewater discharge. In this research water pinch technology is applied to develop an effective water-reuse network in an EIP. Three scenarios based on different reusing strategies were developed. The results show that the final water-reuse network can reduce the total fresh water usage more than 30%, while the water expenses decrease by 20%. It can be concluded that water pinch technology is an effective tool to optimize water-reuse network among different industrial facilities.

A Study on the Construction of Eco-Industrial Park and Recycling Network Using GIS Approach (GIS를 활용한 생태산업단지 및 재활용 네트워크 구축에 관한 연구)

  • Kang, Kyung-Ho;Bang, Keon-Suk;Sohn, Hong-Gyoo;Jung, Jae-Hoon;Kim, Chang-Jae
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2011
  • Korean government has promoted nationwide Eco Industrial Park (EIP) project to recycle by-products and wastes in industrial park since 2010. However, the corresponding management is insufficient to support the project. Considering the efficiency and effectiveness, GIS-based management can be an alternative of the current status. This study has focused on the construction of recycling network based on EIP using GIS approach. Two industrial parks located in Gyeonggi province were selected as study sites. GIS-based spatial location analysis was performed to determine the optimal location of recycling company, and to identify linkage of one manufacture to the other manufacturers based on the types of waste. Also, the optimal network for recycling of waste heat was established. Finally, the feasibility of the current GIS-based recycling network was established by performing benefit-cost analysis.

Outcomes and Evaluations of Ulsan Eco-city Model (울산형 생태도시 모델의 평가)

  • Lee, Sang-Hyeon;Suh, Jung-Ho;Cho, Hong-Je
    • Journal of Environmental Science International
    • /
    • v.23 no.6
    • /
    • pp.1111-1120
    • /
    • 2014
  • Ulsan made its contributions to modern Korea as an industrial city. In the 1960s, Ulsan was appointed as a special industrial zone. After that, industrial complexes were built without environmental considerations so Ulsan was once called "the polluted city". However, in the early 2000s, the main concern of Ulsan's policies was gradually shifted from the economic growth to the environmental issues. In order to enhance the environmental quality and to make the Ulsan more environmentally friendly eco-city where human and nature coexist, Ulsan city declared "The Eco-polis Ulsan" in 2004 based on "The Master Plan for Eco-polis Ulsan" which included the eco-industrial park as an action plan. This study aims at defining the concepts of eco-city and policies to build Ulsan-style eco-city as environmentally friendly city and proposing Ulsan as a role model to cities and towns of developing countries. In addition, Ulsan's EIP project which will be implemented for 15 years from 2005, is elaborated including regulatory issues and technologies to be applied.

Eco-efficiency of Energy Symbiosis for the Energy Network of Surplus Heat

  • Shin, Choon-Hwan;Kim, Ji-Won
    • Journal of Environmental Science International
    • /
    • v.21 no.5
    • /
    • pp.545-553
    • /
    • 2012
  • Eco-efficiency considers both environmental impacts and economic values. It is a useful tool for communicating with stakeholders for business decision making. This study evaluated the eco-efficiency factor (EEF) for the energy network of a dyeing company that supplies surplus heat to a neighboring apartment during the night. This symbiosis network is one of the eco-industrial park (EIP) projects in Korea and aims to benefit local residents and the industrial complex by utilizing surplus heat. In this study, two categories were annualized. The first quantified environmental burden based on $CO_2$ emissions and quantified product value in terms of steam sales. The second used a variety of environmental factors, such as fossil fuel, water and waste, to quantify environmental burden and used steam sales to quantify value. The EEF of the symbiosis network was 1.6, using the global warming impact, and determined using the multiple variable, was 1.33. This study shows that the EEF depends on variable details of environmental burden but the values of this project were very high contrast to other business or EIP project.

Development of Eco-Efficiency Indicators for Yeosu Industrial Park (여수산업단지의 생태효율성지표 개발에 관한 연구)

  • Kim, Jung-In;Yun, Chang-Han;Yoon, Hyung-Sun
    • Clean Technology
    • /
    • v.16 no.3
    • /
    • pp.229-237
    • /
    • 2010
  • The industrial ecology indicators(IEI) for Yeosu Industrial Park were developed using eco-efficiency indicator(EEI). The key factors for the creation of IEI were two parts. One part is the value of the products which is selected as the total production value, the amount of ethylene production, the amount of light oil production instead of the total sales volume for Yeosu Industrial Park, since the currency exchange and the price of raw materials varied every year. The other part is the environmental burden. The electric consumption, the industrial water consumption, and the amount of discharged waste water are all officially opened to the public, were used in the calculation. Based on the value for the year of 2004, the IEI value for 2006 became worse to 0.954, but, was expected to be 1.153, a 15% improvement, for 2015 if the current EIP project is successfully performed.