• Title/Summary/Keyword: Eccentricity faults

Search Result 14, Processing Time 0.021 seconds

Analysis of Rotor Vibration Types Caused by Air-gap Flux Variations in Induction Motors (유도전동기 공극자속 변화에 따른 진동유형 해석)

  • Hwang Don-Ha;Lee Ki-Chang;Lee Joo-Hoon;Kim Yong-Joo;Choi Kyeong-Ho;Lee Jin-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2004.07b
    • /
    • pp.862-865
    • /
    • 2004
  • Faults such as broken rotor bars, static and dynamic eccentricity are often reported in induction motors. These faults increase the down-time of equipment, which causes major loss of earnings to the industry. This paper presents a result of the finite-element(FE) analysis of air-gap flux variation in induction motors when rotor vibration conditions occur, An accurate modelling and analysis of rotor vibration in the machine are developed using FE software packages, and measuring the flux are made using the search coils. In the FE analysis, an induction motor with 380 [V], 5[HP], 4 Poles, 1742 [rpm] ratings is used. The results of FE analysis can be used for on-line vibration monitoring of the induction motors.

  • PDF

A Study on Detection of Broken Rotor Bars in Induction Motors Using Current Signature Analysis (전류신호를 이용한 유도전동기의 회전자봉 결함검출에 관한 연구)

  • 신대철;정병훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.4
    • /
    • pp.287-293
    • /
    • 2002
  • The unexpected failure of the induction motor makes the downtime of production, and the cost of the process cessation enormous. To reduce the downtime and increase the reliability of the motor, the vibration measurements for the fault detection have been used previously. Recently motor current signature analysis(MCSA) has been adapted for the fault detection and diagnosis of the motors. MCSA provides a powerful analysis tool for detecting the presence of mechanical and electrical faults in both the motor and driven equipment. In this paper, the fault severity of the rotor bar has been derived in terms of the resistance change which is calculated from the equivalent circuit model. Results show that the fault of the rotor can be easily detected and the measured value of the resistance change is verified by the detected fault from on-site tests using MCSA for the induction motors in an iron foundry.

Rotor dynamic analysis of a tidal turbine considering fluid-structure interaction under shear flow and waves

  • Lass, Andre;Schilling, Matti;Kumar, Jitendra;Wurm, Frank-Hendrik
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.154-164
    • /
    • 2019
  • A rotor dynamic analysis is mandatory for stability and design optimization of submerged propellers and turbines. An accurate simulation requires a proper consideration of fluid-induced reaction forces. This paper presents a bi-directional coupling of a bond graph method solver and an unsteady vortex lattice method solver where the former is used to model the rotor dynamics of the power train and the latter is used to predict transient hydrodynamic forces. Due to solver coupling, determination of hydrodynamic coefficients is obsolete and added mass effects are considered automatically. Additionally, power grid and structural faults like grid fluctuations, eccentricity or failure could be investigated using the same model. In this research work a fast, time resolved dynamic simulation of the complete power train is conducted. As an example, the rotor dynamics of a tidal stream turbine is investigated under two inflow conditions: I - shear flow, II - shear flow + water waves.

Development of Fault Diagnosis Technology Based on Spectrum Analysis of Acceleration Signal for Paper Cup Forming Machine (가속도 신호의 주파수 분석에 기반한 종이용기 성형기 구동축 고장진단 요소기술 개발)

  • Jang, Jaeho;Ha, Changkeun;Chu, Baeksuk;Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.6
    • /
    • pp.1-8
    • /
    • 2016
  • As demand for paper cups markedly increases, this has brought about a requirement to develop fast paper cup forming machines. However, the fast manufacturing speed of these machines causes faults to occur more frequently in the final product. To reduce the possibility of producing faulty products, it is necessary to develop technologies to monitor the manufacturing process and diagnose the machine status. In this research, we selected the main driving axis of the forming machine for fault diagnosis. We searched the states of rotational elements related to the driving axis and suggested a fault diagnostic system based on spectrum analysis consisting of a real-time data acquisition device, accelerometers, and a diagnosis algorithm. To evaluate the developed fault diagnostic system, we performed experiments using a test station which resembles the actual paper cup forming machine. As a result, we were able to confirm that the proposed system was sufficiently feasible to diagnose any abnormalities in the operation of the paper cup forming machine.