• Title/Summary/Keyword: Eccentricity

검색결과 900건 처리시간 0.025초

Role of accidental torsion in seismic reliability assessment for steel buildings

  • Chang, Heui-Yung;Lin, Chu-Chieh Jay;Lin, Ker-Chun;Chen, Jung-Yu
    • Steel and Composite Structures
    • /
    • 제9권5호
    • /
    • pp.457-471
    • /
    • 2009
  • This study investigates the role of accidental torsion in seismic reliability assessment. The analyzed structures are regular 6-story and 20-story steel office buildings. The eccentricity in a floor plan was simulated by shifting the mass from the centroid by 5% of the dimension normal to earthquake shaking. The eccentricity along building heights was replicated by Latin hypercube sampling. The fragilities for immediate occupancy and life safety were evaluated using 0.7% and 2.5% inter-story drift limits. Two limit-state probabilities and the corresponding earthquake intensities were compared. The effect of ignoring accidental torsion and the use of code accidental eccentricity were also assessed. The results show that accidental torsion may influence differently the structural reliability and limit-state PGAs. In terms of structural reliability, significant differences in the probability of failure are obtained depending on whether accidental torsion is considered or not. In terms of limit-state PGAs, accidental torsion does not have a significant effect. In detail, ignoring accidental torsion leads to underestimates in low-rise buildings and at small drift limits. On the other hand, the use of code accidental eccentricity gives conservative estimates, especially in high-rise buildings at small drift limits.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • 제5권1호
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

Testing Capability of CME Eccentricity Parameter

  • Rho, Su-Lyun;Cho, Kyung-Suk;Chang, Heon-Young;Moon, Yong-Jae;Kim, Rok-Soon;Park, Young-Deuk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2009년도 한국우주과학회보 제18권2호
    • /
    • pp.37.4-38
    • /
    • 2009
  • Rho et al.(2008) showed that the eccentricity parameter of a CME is an important indicator for forecasting CME geoeffectiveness. In this study we have tested a capability of the eccentricity parameter as an indicator of CME direction. For this work we considered 11 CMEs observed by both SOHO/LASCO and STEREO/SECCHI (2007-2008 from Temmer et al. 2009) coronagraphs. We have estimated earthward direction angles for these CMEs based on two different methods: (1) the eccentricity parameter from a single coronagraph SOHO/LASCO and (2) the triangulation technique using a pair of spacecrafts LASCO/STEREO-A and LASCO/STEREO-B. As a result, we have found that for 7 out of 11 CME events their direction angles are consistent with each other within $20^{\circ}$. This result demonstrates that the earthward direction based on the eccentricity parameter can be a good potential indicator for CME propagation direction.

  • PDF

편심(偏心) 보강평판(補强平板)의 강도(强度) 해석(解析) (Strength Analysis of Eccentrically Stiffened Plates by Finte Element Method)

  • 김창렬;김재복
    • 대한조선학회지
    • /
    • 제17권4호
    • /
    • pp.1-11
    • /
    • 1980
  • Stiffened plates are commonly used as a component of ship's structures. Most frequently symmetrically stiffened plates are used, but some of stern structures and any specified parts are often constructed with eccentrically stiffened plates. The problems of these eccentrically stiffened plates have been studied rarely, and the results of eccentricity effect of eccentrically stiffened plates are not available. This paper deals with the analysis of eccentrically stiffened plates in the linear elastic range. The derivation of the stiffness matrix was carried out by finite element method for which the isoparametric element was adopted. To show the effect of eccentricity, the deflection at the center under the uniformly distributed and the concentrated load of simply supported and clamped plate models are computed respectively in accordance with the eccentricity of the stiffener. As shown in the results of computations, the eccentricity effect of concentrated load case is greater than that of distributed load case and that of simply supported boundary condition is greater than that of clamped boundary condition. The higher eccentricity of stiffener is, the smaller the effect of stiffener becomes, therefore scantling of eccentrically stiffened plates should be considerably greater than those of symmetrically stiffened plates.

  • PDF

Analysis and design of eccentrically loaded lightweight aggregate concrete-encased steel slender columns

  • Mostafa M.A. Mostafa
    • Structural Engineering and Mechanics
    • /
    • 제88권1호
    • /
    • pp.25-42
    • /
    • 2023
  • This paper presents a finite element (FE) simulation of eccentrically loaded lightweight aggregate concrete-encased steel (LACES) columns with H-shaped steel sections, analytical equations are also established to estimate the columns' axial and bending moment interaction capacities. The validity of the proposed models is checked by comparing the results with experimental data. Good agreements between the test and proposed models' results are found with acceptable agreements. Moreover, design parameters, including the lightweight aggregate concrete (LWAC) strength, eccentricity, column slenderness ratio, and confinement, are studied using the FE analysis, and their efficiency factors are discussed. The results show that the ultimate axial capacity of the LACES composite columns subjected to eccentric loading is negatively affected by the increase in the columns' height, but it is positively affected by the increase of the confinement. Increasing the eccentricity and columns' height reduced the columns'stiffness. In addition, the ultimate capacity of the LACES column is significantly influenced by the LWAC strength and eccentricity, where the ultimate capacity of the LACES column is significantly increased by increasing LWAC strength, and it is remarkably decreased by increasing the eccentricity. When the eccentricity changed from zero to 70 mm, the ultimate axial capacity and stiffness decreased by 67.97% and 63.56%, respectively.

Minimax Eccentricity Estimation for Multiple Set Factor Analysis

  • Hyuncheol Kang;Kim, Keeyoung
    • Journal of the Korean Statistical Society
    • /
    • 제31권2호
    • /
    • pp.163-175
    • /
    • 2002
  • An extended version of the minimax eccentricity factor estimation for multiple set case is proposed. In addition, two more simple methods for multiple set factor analysis exploiting the concept of generalized canonical correlation analysis is suggested. Finally, a certain connection between the generalized canonical correlation analysis and the multiple set factor analysis is derived which helps us clarify the relationship.

CNC선반에서 주축변위센서를 이용한 가공편심오차의 검출에 관한 연구 (A Study on Detection of Runout Eccentric Error Using CCS Sensor at CNC Lathe)

  • 양재생;맹희영
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 추계학술대회 논문집
    • /
    • pp.468-473
    • /
    • 2002
  • This paper presents the methodology for measuring eccentricity of the cylindricaliy machined part using CCS(Cylindrical Capacity Spindle Sensor) signal in the CNC turning process. In order to investigate the relationships between CCS orbits and eccentricities, the initial conditions for various eccentricity state and machining process is applied to the experimental strategy. AS a result, it is considered the linearities of CCS signal and magnitude of eccentricity of machined cylindrical surfaces based on the possibility as a automatic detection apparatus for the CNC lathe.

  • PDF

Prediction of Error due to Eccentricity of Hole in Hole-Drilling Method Using Neural Network

  • Kim, Cheol;Yang, Won-Ho
    • Journal of Mechanical Science and Technology
    • /
    • 제16권11호
    • /
    • pp.1359-1366
    • /
    • 2002
  • The measurement of residual stresses by the hole-drilling method has been used to evaluate residual stresses in structural members. In this method, eccentricity can usually occur between the hole center and rosette gage center. In this study, we obtained the magnitude of the error due to eccentricity of a hole through the finite element analysis. To predict the magnitude of the error due to eccentricity of a hole in the biaxial residual stress field, it could be learned through the back propagation neural network. The prediction results of the error using the trained neural network showed good agreement with FE analyzed results.

연속 냉간 압연기의 다변수 $H_{\infty}$ 외란제거 제어 (Multivariable $H_{\infty}$ disturbance rejection control for tandem cold mills)

  • 김승수;김종식
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.391-394
    • /
    • 1997
  • A H$_{\infty}$ control techniques with roll eccentricity filter is proposed to alleviate the effect of entry thickness variation and roll eccentricity occurred in rolling stand itself of tandem cold mills. A robust controller to the disturbances is designed using H$_{\infty}$ control techniques, which can reflect the input direction of disturbances and knowledge of disturbance spectrum in the frequency domain. And, non-standard H$_{\infty}$ control problem caused by selection of weight function having poles on j.omega. axis is discussed. The evaluation for the resultant controller composed by H$_{\infty}$ synthesis is done through computer simulations. The effectiveness of the proposed method is compared to those of the conventional LQ synthesis method and a feedforward controller against roll eccentricity, which was already studied.ied.

  • PDF