• 제목/요약/키워드: Eca109

검색결과 13건 처리시간 0.013초

MSP58 Knockdown Inhibits the Proliferation of Esophageal Squamous Cell Carcinoma in Vitro and in Vivo

  • Xu, Chun-Sheng;Zheng, Jian-Yong;Zhang, Hai-Long;Zhao, Hua-Dong;Zhang, Jing;Wu, Guo-Qiang;Wu, Lin;Wang, Qing;Wang, Wei-Zhong;Zhang, Jian
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권7호
    • /
    • pp.3233-3238
    • /
    • 2012
  • Esophageal carcinoma (EC) is one of the most aggressive cancers with a poor prognosis. Understanding the molecular mechanisms underlying esophageal cancer progression is a high priority for improved EC diagnosis and prognosis. Recently, MSP58 was shown to behave as an oncogene in colorectal carcinomas and gliomas. However, little is known about its function in esophageal carcinomas. We therefore examined the effects of MSP58 knockdown on the growth of esophageal squamous cell carcinoma (ESCC) cells in vitro and in vivo in order to gain a better understanding of its potential as a tumor therapeutic target. We employed lentiviral-mediated small hairpin RNA (shRNA) to knock down the expression of MSP58 in the ESCC cell lines Eca-109 and EC9706 and demonstrated inhibition of ESCC cell proliferation and colony formation in vitro. Furthermore, flow cytometry and western blot analyses revealed that MSP58 depletion induced cell cycle arrest by regulating the expression of P21, CDK4 and cyclin D1. Notably, the downregulation of MSP58 significantly inhibited the growth of ESCC xenografts in nude mice. Our results suggest that MSP58 may play an important role in ESCC progression.

Alteration of Runt-related Transcription Factor 3 Gene Expression and Biologic Behavior of Esophageal Carcinoma TE-1 Cells after 5-Azacytidine Intervention

  • Wang, Shuai;Liu, Hong;Akhtar, Javed;Chen, Hua-Xia;Wang, Zhou
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5427-5433
    • /
    • 2013
  • 5-Azacytidine (5-azaC) was originally identified as an anticancer drug (NSC102876) which can cause hypomethylation of tumor suppressor genes. To assess its effects on runt-related transcription factor 3 (RUNX3), expression levels and the promoter methylation status of the RUNX3 gene were assessed. We also investigated alteration of biologic behavior of esophageal carcinoma TE-1 cells. MTT assays showed 5-azaC inhibited the proliferation of TE-1 cells in a time and dose-dependent way. Although other genes could be demethylated after 5-azaC intervention, we focused on RUNX3 gene in this study. The expression level of RUNX3 mRNA increased significantly in TE-1 cells after treatment with 5-azaC at hypotoxic levels. RT-PCR showed 5-azaC at $50{\mu}M$ had the highest RUNX3-induction activity. Methylation-specific PCR indicated that 5-azaC induced RUNX3 expression through demethylation. Migration and invasion of TE-1 cells were inhibited by 5-azaC, along with growth of Eca109 xenografts in nude mice. In conclusion, we demonstrate that the RUNX3 gene can be reactivated by the demethylation reagent 5-azaC, which inhibits the proliferation, migration and invasion of esophageal carcinoma TE-1 cells.

Stathmin is a Marker of Progression and Poor Prognosis in Esophageal Carcinoma

  • Wang, Feng;Xuan, Xiao-Yan;Yang, Xuan;Cao, Lei;Pang, Li-Na;Zhou, Ran;Fan, Qin-Xia;Wang, Liu-Xing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권8호
    • /
    • pp.3613-3618
    • /
    • 2014
  • Stathmin, also called oncoprotein 18, is a founding member of the family of microtubule-destabilizing proteins that play a critical role in the regulation of mitosis. At the same time stathmin has been recognized as one of responsible factors in cancer cells. The aim of this study was to assess stathmin status, its correlations with clinicopathological parameters and its role as a progosnostic marker in EC patients. The protein and mRNA levels of stathmin were examined byimmunohistochemistry (IHC) and in situ hybridization in 100EC tissues and adjacent noncancerous tissues. mRNA and protein expression of stathmin in three EC cell lines(EC9706, ECa109, EC1 commonly used in research) were also analyzed using immunocytochemistry, western blot and in situ hybridization. The prognostic value of Stathmin expression within the tumor tissues were assessed by Cox regression and Kaplan-Meier analysis. We showed that stathmin expression was significantly higher in EC tissues than in adjacent noncancerous tissues. High stathmin immunostaining score in the EC was positively correlated with tumor differentiation, Tumor invasion, Lymph node metastases, and TNM stage. In addition, we demonstrated that three EC cell lines examined, were constitutively expressing a high level of stathmin. Of those, EC-1 showed the strongest mRNA and protein expression for the stathmin analyzed. Kaplan-Meier analysis showed that significantly longer 5-year survival rate was seen in EC patients with high Stathmin expression, compared to those with low expression of Stathmin expression. Furthermore, multivariate Cox proportional hazard analyses revealed that Stathmin was an independent factors affecting the overall survival probability. In conclusion, our data provide a basis for the concept that stathmin might be associated with EC development and progression. High levels of Stathmin expression in the tumor tissues may be a good prognostic marker for patients with EC.