• Title/Summary/Keyword: Eastern Yellow Sea

Search Result 121, Processing Time 0.03 seconds

On the Annual Variation of Mean Sea Level along the Coast of Korea (한국연안 평균 해면의 연변화)

  • 강용균;이병돈
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.22-30
    • /
    • 1985
  • The mean sea level(MSL) along the coast of Korea is high in summer and low in winter, mainly due to the inverse barometric effect and the steric departure. The MSL associated with the inverse barometric effect is spatially uniform and has an amplitude of 8.5$\pm$0.8cm. The thermal departure, with amplitude of 4~8cm, is most dominant in the Yellow Sea. The MSL in the South Sea of Korea is strongly affected by the haline departure, which has an amplitude up to 5cm. The annual range of MSL along the western and eastern coasts of Korea are about 40 and 20cm, respectively. The spatial inhomogeneity of the annual range of MSL arises mainly due to the influence of the Asian monsoon, which amplifies (weakens) the annual MSL along the western (eastern) coast of Korea.

  • PDF

Oceanographic Conditions in the Neighboring Seas of Cheju Island and the Appearance of Low Salinity Surface Water in May 2000 (2000년 5월 제주도 주변해역의 해황 및 표층 저염분수의 출현)

  • KIM Sang Hyun;RHO Hong Kil
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.148-158
    • /
    • 2004
  • In the adjacent seas of Cheju Island, the oceanographic conditions show low salinity surface waters starting in May. This water flows from the southeast part of the China Coastal Water, which flows southeastward along the Great Yangtze Sand Bank until April, with the help of southeasterly winds and flows from the adjacent sea off Cheju Island. In May, the Tsushima Warm Current and the low salinity surface water fluctuate in short and long-term periods as influenced by Yellow Sea Cold Water, which flows to the bottom layer at the western entrance of Cheju Strait. Temperature and salinity fronts in the northeastern sea area of U Island are formed in the boundary area between the Tsushima Warm Current, which expands towards Cheju Island from the southeastern sea area of Cheju Island and Hows out from the eastern entrance of the strait. Seasonally, additional oceanographic conditions, such as coastal counter-currents, which flow southward, appears within limited areas in the adjacent eastern and western seas of Cheju Island.

Late Quaternary Sequence Stratigraphy in Kyeonggi Bay, Mid-eastern Yellow Sea (황해 중동부 경기만의 후기 제4기 순차층서 연구)

  • Kwon, Yi-Kyun
    • Journal of the Korean earth science society
    • /
    • v.33 no.3
    • /
    • pp.242-258
    • /
    • 2012
  • The Yellow Sea has sensitively responded to high-amplitude sea-level fluctuations during the late Quaternary. The repeated inundation and exposure have produced distinct transgression-regression successions with extensive exposure surfaces in Kyeonggi Bay. The late Quaternary strata consist of four seismic stratigraphic units, considered as depositional sequences (DS-1, DS-2, DS-3, and DS-4). DS-1 was interpreted as ridge-forming sediments of tidal-flat and estuarine channel-fill facies, formed during the Holocene highstand. DS-2 consists of shallow-marine facies in offshore area, which was formed during the regression of Marine Isotope Stage (MIS)-3 period. DS-3 comprises the lower transgressive facies and the upper highstand tidal-flat facies in proximal ridges and forced regression facies in distal ridges and offshore area. The lowermost DS-4 rests on acoustic basement rocks, considered as the shallow-marine and shelf deposits formed before the MIS-6 lowstand. This study suggests six depositional stages. During the first stage-A, MIS-6 lowstand, the Yellow Sea shelf was subaerially exposed with intensive fluvial incision and weathering. The subsequent rapid and high amplitude rise of sea level in stage-B until the MIS-5e highstand produced transgressive deposits in the lowermost part of the MIS-5 sequence, and the successive regression during the MIS-5d to -5a and the MIS-4 lowstand formed the upperpart of the MIS-5 sequence in stage-C. During the stage-D, from the MIS-4 lowstand to MIS-3c highstand period, the transgressive MIS-3 sequence formed in a subtidal environment characterized by repetitive fluvial incision and channel-fill deposition in exposed area. The subsequent sea-level fall culminating the last glacial maximum (Stage-E) made shallow-marine regressive deposits of MIS-3 sequence in offshore distal area, whereas it formed fluvial channel-fills and floodplain deposits in the proximal area. After the last glacial maximum, the overall Yellow Sea shelf was inundated by the Holocene transgression and highstand (Stage-F), forming the Holocene transgressive shelf sands and tidal ridges.

Preliminary Study of Heavy Minerals in the Central Yellow Sea Mud (황해중앙이질대 퇴적물에 대한 중광물 예비 연구)

  • Lee, Bu Yeong;Cho, Hyen Goo;Kim, Soon-Oh;Yi, Hi Il
    • Journal of the Mineralogical Society of Korea
    • /
    • v.29 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • We studied the heavy minerals in 46 surface sediments collected from the Central Yellow Sea Mud (CYSM) to characterize the type, abundance, mineralogical properties and distribution pattern using the stereo-microscopy, field-Emission scanning electron microscopy (FE SEM) and chemical analysis through the energy dispersive spectrometer (EDS). Heavy mineral assemblages are primarily composed of epidote group, amphibole group, garnet group, zircon, rutile and sphene in descending order. Epidote group and amphibole group minerals account for more than 50% of total heavy minerals. The minerals in epidote group, amphibole group and garnet group in studied area are epidote, edenite and almandine, respectively. When we divided the CYSM into two regions by $124^{\circ}E$, the eastern region contain higher contents of epidote and (zircon + rutile), which are more resistant to weathering but lower of amphibole, which is less resistant to weathering than the western region. Based on this results, it is possible to estimate that the eastern region sediments are transported for a long distance while western region sediments are transported for a short distance from the source area. In the future, the additional study on the heavy minerals in river sediments flowing into the Yellow Sea and much more samples for marine sediments must be carried out to interpret exactly the provenance and sedimentation process.

Surface Current Fields in the Eastern East China Sea

  • Lie, Heung-Jae;Cho, Cheol-Ho
    • Journal of the korean society of oceanography
    • /
    • v.32 no.1
    • /
    • pp.1-7
    • /
    • 1997
  • Surface current fields in the eastern East China Sea (ECS) were constructed by analyzing trajectories of 58 satellite-tracked surface drifters released during 1991-1996. Composite trajectories and 20-minute-by-20-minute box-averaged current vectors show that the basic current pattern composes of: the Kuroshio main stream, which turns eastward toward the Tokara Strait; a northward branch current of the Kuroshio on the ECS outer shelf deeper than 100 m; and an anticyclonic circulation in the northern Okinawa Trough west of Kyushu. The northward branch current sharply changes its direction to the northeast when it crosses a line connecting Cheju Island, Korea and Goto Islands, Japan. The basic pattern of current field changes slightly from winter to summer, and the main axis of the Tsushima Current in the Korea Strait is found to shift seasonally. The drifter experiment does not support the claim that the Yellow Sea Warm Current is separated from the northward branch current on the outer shelf southeast of Cheju Island. We suggest that the use of the term 'Tsushima Current' be limited to the northeast channel flow in the Korea Strait. The new term 'Kuroshio Branch Current' is suggested for the northward branch current on the outer shelf south of Cheju-do, which is separated from the Kuroshio.

  • PDF

Sea surface circulation and ie variability in the North East Asian Seas by remote sensing (Topex/Poseidon)

  • Yoon, Hong-Joo;Yoon, Yong-Hoon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.108-111
    • /
    • 2003
  • Altimeter data from the Topex/Poseidon (T/P) were analyzed to study the sea surface circulation and its variability in the North East Asian Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. Tf data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level variability, with strong eddy and meandering, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extension area.

  • PDF

Monthly-mean sea surface winds over the adjacent seas of the Korea Peninsular (한국근해의 월평균 해상풍)

  • 나정열;서장원
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1992
  • The sea surface winds are computed over the adjacent seas of Korea from the twice-dayily weather maps for the ten-year period 1978-1987 by using the Cardone model. Monthly mean wind-stress and wind0stress curl are also calculated and given as maps. the computed surface winds are compared with observed one at the JMA (Japan Meteorological Agency) Buoy. and the results show a good consistency in speed and direction. In particular, the magnitude of mean wind-stress is turned out to be twice bigger than the previous results over the sea of Japan. Monthly distributions of wind-stress curl reveal that over the yellow sea by the longitudinal boundary of $120^{\circ}{\;}~{\;}125^{\circ}{\;}E$, the area of negative cur exists over the western part of the sea except summer season, while the positive sign of the curl prevails over the eastern part of the Yellow Sea. However, over the Sea of Japan, with two positive maxima at the northern part and near the Wonsan Bay, the positive curl in the northern half and the negative curl in the southern of the sea characterize the monthly mean distribution of the wind-stress curl.

  • PDF

Sea Level Variations in the East Asian Marginal Seas by Topex/Poseidon Altimeter Data (Topex/Poseidon 고도계자료를 이용한 동북아시아 연변해역의 해수면 변화 연구)

  • Yoon, Hong-Joo;Kim, Sangwoo;Lee, Moon-Ock;Park, Il-Heum
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.300-303
    • /
    • 2001
  • The first 7 years of altimeter data from the TOPEX/POSEIDON (T/P) were analyzed to study the surface circulation and its variability in the East Asian Marginal Seas. Long term averaged T/P sea level time series data where compared with in situ sea level measurements from a float-operated type tide gauge around of south Korea and Japan. T/P data are a large contaminated by 60-day tidal aliasing effect, very near the alias periods of M2 and S2. When this 60-day effect is removed, the data agree well with the tide gauge data with 4.6 cm averaged RMS difference. The T/P derived sea level variability reveals clearly the well-known, strong current-topography such as Kuroshio. The T/P mean sea level of North Pacific (NP) was higher than Yellow Sea (YS) and East Sea (ES). The T/P sea level valibility, with strong eddy and meandaring, was the largest in eastern part of Japan and this variability was mainly due to the influence of bottom topography in Kuroshio Extention area.

  • PDF

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Warm Water Circulation and its Origin by Sea Level Fluctuation and Bottom Topography (해수면변화와 해저지형에 의한 난류수의 순환과 그 기원)

  • PARK Ig-Chan;OH Im Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.677-697
    • /
    • 1995
  • The analysis of long- period sea level variations with tidal record data around Korea, Japan, and Russia shows that about half of the variations are due to atmospheric influences. The sea level variation by water movements is the largest in the coasts along the Tsushima Current, and becomes smaller in the distant areas. It suggests that the sea level varications are related with the Tsushima Current. The effect of sea level variations to ocean circulation has been studied with a numerical model allowing barotropic sea level fluctuations, like the result with GCM (Semtner) model by Pang et al.(1993), the present model also shows that waters basically flow along isobaths over the last China Sea after geostyophic adjustment around Taiwan. However, barotropic sea level fluctuation makes the basic circulation in the Yellow Sea, which waters flow into the central Yellow Sea and out along the west coast of the Korean Peninsula. Besides this, barotropic sea level fluctuation makes long period waves over the shelf area as the Kuroshio varies. By the waves, the basic circulation in the Yellow Sea is disturbed, so that the flow pattern of oppositely flowing into the Yellow Sea along the west roast of the Korean Peninsula appears. In the Yellow Sea circulation, it seems that northwest winds strengthen the basic circulat ion In winter, and southeast winds strengthen the disturbed circulation in summer. Another point appeared by the long period wave is that the Tsushima Current possibly originates in different areas. There have been two opposing argues on the area in which the Tsushima Current originates the southwest sea of Kyushu Island and the adjacent sea of Taiwan. Through this study, we found that both of them seem to be important areas for the origin of the Tsushima Current, and one of them is possibly strengthened by long period waves. The long period waves given by the variation of the Kuroshio Current in the adjacent sea of Taiwan propagate to the Korea Strait as forced waves. The wave continuously propagates to the last Sea through the eastern channel, but reflects in the western channel due to bottom topography. The reflected waves propagate southwestward along the last China Sea as free waves and determine the sea level variations with forced waves.

  • PDF