• Title/Summary/Keyword: East Sea Intermediate Water

Search Result 47, Processing Time 0.031 seconds

Mode Change of Deep Water Formation Deduced from Slow Variation of Thermal Structure: One-dimensional Model Study (열적 수직 구조의 장기 변화로부터 유추한 동해 심층수 형성 모드의 변환: 1차원 모델 연구)

  • Chae, Yeong-Ki;Seung, Young-Ho;Kang, Sok-Kuh
    • Ocean and Polar Research
    • /
    • v.27 no.2
    • /
    • pp.115-123
    • /
    • 2005
  • Recently, it has been observed in the East Sea that temperature increases below the thermocline, and dissolved oxygen increase in the intermediate layer but decrease below it. The layer of minimum dissolved oxygen deepens and the bottom homogeneous layer in oxygen becomes thinner. It emerges very probably that these changes are induced by the mode change of deep water formation associated with global warming. To further support this hypothesis, a one-dimensional model experiment is performed. First, a thermal profile is obtained by injecting a cold and high oxygen deep water into the bottom layer, say the bottom mode. Then, two thermal profiles are obtained from the bottom mode profile by assuming that either all the deep water introduce into the intermediate layer has been initiated, say the intermediate mode, or that only a part of the deep water has been initiated into the intermediate layer, say the intermediate-bottom mode. The results, from the intermediate-bottom mode experiment are closest to the observed results. They show quite well the tendency for oxygen to increase in the intermediate layer and the simultaneous thinning of the bottom homogeneous layer in oxygen. Therefore, it can be said that the recently observed slow variation of the thermal structure might be associated with changes in the deep water formation from the bottom mode to the intermediate-bottom mode.

Seasonal and Interannual Variability of the North Korean Cold Current in the East Sea Reanalysis Data (동해 재분석 자료에 나타난 북한한류의 계절 및 경년변동성)

  • Kim, Young-Ho;Min, Hong-Sik
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.21-31
    • /
    • 2008
  • Analyzing the results of East Sea Regional Ocean Model using a 3-dimensional variational data assimilation scheme, we investigated spatial and temporal variability of the North Korean Cold Current (NKCC) in the East Sea. The climatological monthly mean transport of the NKCC clearly shows seasonal variation of the NKCC within the range of about 0.35 Sv ($=0^6m^3/s$), which increases from its minimum (about 0.45 Sv) through December-January to March, decreases during March and May, and then increases again to the maximum (about 0.8 Sv) in August-September. The volume transport of the NKCC shows interannual variation of the NKCC with the range of about 1.0 Sv that is larger than seasonal variation. The southward current of the NKCC appears often not only in summer but in winter as well. The width of the NKCC is about 35 km near the Korean coast and its core is located under the East Korea Warm Current. The North Korean Cold Water (NKCW), characterized by low salinity and low temperature, is located both under the Tsushima Warm Water and in the western side of the maximum southward current of the NKCC that means the NKCC advects the NKCW southward along the Korean coast. It is revealed that the intermediate low salinity water, formed off the Vladivostok in winter, flows southward to the south of $37^{\circ}N$ through $2{\sim}3$ paths; one path along the Korean coast, another one along $132^{\circ}E$, and the middle path along $130^{\circ}E$. The path of the intermediate low salinity varies with years. The reanalysis fields suggest that the NKCW is advected through the paths along the Korean coast and along $130^{\circ}E$.

Southward Intrusion of the East Sea Intermediate Water into the Ulleung Basin: Observations in 1992 and 1993

  • Shin, Chang-Woong;Byun, Sang-Kyung;Kim, Cheol-Soo;Seung, Young-Ho
    • Journal of the korean society of oceanography
    • /
    • v.33 no.4
    • /
    • pp.146-156
    • /
    • 1998
  • Hydrographic data retrieved in the southwestern part of the East Sea in 1992-1993 were analyzed to investigate the probability of southward intrusion of the East Sea Intermediate Water (ESIW) into the Ulleung Basin. The ESIW showed the ranges of 1 to 4$^{\circ}$C in potential temperature, 33.80-34.06 psu in salinity, and 26.9-27.3 kg/m$^3$ in potential density (${\sigma}$$_{\theta}$). The mean depth occupied by the ESIW was 170 m, where the characteristic values of the above three were 2.64$^{\circ}$C , 34.02 psu, and 27.13 kg/m$^3$, respectively. One of the most prominent features of the ESIW was that its salinity changed not only seasonally but also interannually. It was low in summer and high in winter. The salinity within the isopycnal layer of 26.9-27.3 kg/m$^3$ was closely related with the potential vorticity (${\rho}$$_{\theta}^{-1}$ f ${\varrho}$${\rho}_{\theta}$/${\varrho}$z), being in direct proportion to the salinity. This implies that the low-salinity water was thicker than the high-salinity water. The flow path of the ESIW was investigated by tracking the low-salinity or the low-potential vorticity water and by referring to acceleration potential. Careful analysis of the flow path proves that the ESIW intrudes from the north between the Korean coast and Ulleung Island into the Ulleung Basin in summer. Existence of the high-potential vorticity water in the Ulleung Basin is associated with the interruption of the inflow of low-salinity water.

  • PDF

Some Important Summer Oceanogaphic Phenomena in the East China Sea (夏季 東支那海의 重要한 海洋學的 現象들)

  • 박영형
    • 한국해양학회지
    • /
    • v.20 no.1
    • /
    • pp.12-21
    • /
    • 1985
  • In this paper, the most important oceangraphic phenomena of the summer season in the East China Sea are reviewed. The hydrographic conditions in the suface layer above the seasonal thermocline are under great influence from solar heating, fresh water runoff mainly from the Yangtze River, and summer wind fields. In the lower layer below the thermocline, several distinct water masses e.g. the Kuroshio surface water, the Western North Pacific Central Water and the Yellow Sea Bottom Cold Water are intruded in response to the adjustment of the field of mass to the various dynamical processes. The frontal mixing between the intruded Yellow Sea Bottom Cold. Water and the Western North Pacific Central Water takes place in the bottom layer over the continental shelf south off Cheju Is. This mixed water probably has mush influence on the water properties of the intermediate and bottom layer around Cheju Is. and the south coast of Korea.

  • PDF

Temperature Variation in the Ulleung Warm Eddy during 2013~2015 (2013~2015년 울릉 난수성 소용돌이의 수온변동)

  • Choi, Yong-Kyu
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.2
    • /
    • pp.205-211
    • /
    • 2016
  • Based on the Expendable Bathythermograph (XBT) observation and serial oceanographic observation of National Institute of Fisheries Science (NIFS) during July 2013 to July 2015, we examined the temperature variation in the Ulleung Warm Eddy (UWE) in the East Sea. The UWE was always shown during the observation periods even though it was not the whole shape. The coefficient of variation (CV) was largest in the depth of 250 m at the side of the east coast of Korean Peninsula with $3{\sim}4^{\circ}C$ in temperature. CV of the horizontal distribution at 250 m depth was also largest in the region biased along the east coast of Korea. The warm eddy moved not only to the east-west direction but also to the north-south direction in the viewpoint of horizontal distributions of temperature. This region between the Korean Peninsula and Ulleung island also is the passage of the East Korean Warm Current. This means that interaction between the East Korean Warm Current and periphery of warm eddy makes large in the variation of movement along the east coast of Korean Peninsula. The largest variation of temperature at 250 m depth seemed to be significantly correlated with the East Sea Intermediate Water (ESIW) underlying Ulleung Warm Eddy. It is suggested that the interaction between the ESIW and UWE is active in the mid-depth along the periphery of UWE.

Spatial and Temporal Variation of Dissolved Inorganic Radiocarbon in the East Sea (동해 용존무기탄소 중 방사성탄소의 분지별 비교 및 시간에 따른 변화)

  • Sim, Bo-Ram;Kang, Dong-Jin;Park, Young Gyu;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.36 no.2
    • /
    • pp.111-119
    • /
    • 2014
  • This study examined the spatial and temporal variation of dissolved inorganic radiocarbon in the East Sea. Five vertical profiles of radiocarbon values were obtained from samples collected in 1999 in three basins (Japan Basin, Ulleung Basin, Yamato Basin) of the East Sea. Radiocarbon values decreased from 63- 85‰ at the surface to about -50‰ with increasing depth (up to 2,000 m) and were nearly constant in the layer deeper than 2,000 m in all basins. Radiocarbon values did not show significant basin-to-basin differences in the surface and the bottom layers. In the intermediate layer (200-2,000 m), however, they decreased in the order of Japan Basin > Ulleung Basin > Yamato Basin, which is consistent with the suggested circulation pattern in the intermediate layer of the East Sea. Radiocarbon was found to have decreased at ~2%/year in the surface water of the East Sea. In contrast, in the interior of the East Sea, radiocarbon values have increased with time in all three basins. In the Central Water, the annual increase rate was about 3.3‰, which is faster than the rates in the Deep and Bottom Waters. The radiocarbon in the Deep and Bottom Waters had increased until mid-1990s, after which time it has been almost constant.

CTD Data Processing for CREAMS Expeditions: Thermal-lag Correction of Sea-Bird CTD

  • Kim, Kuh;Cho, Yang-Ki;Ossi, Hyong;Kim, Young-Gyu
    • Journal of the korean society of oceanography
    • /
    • v.35 no.4
    • /
    • pp.192-199
    • /
    • 2000
  • Standard CTD data processing recommended by Sea-Bird Electronics produced thermal-lag corrections larger than 0.1 psu for the data taken during the CREAMS expeditions in the northern part of the East/Japan Sea where a vertical temperature gradient frequently exceeds 1.0$^{\circ}$C/m in the upper 100 m near the sea surface. As the standard processing is based upon a recursive filter which was introduced by Lueck and Pickle (1990), coefficients of the recursive filter have been newly derived for the CREAMS data by minimizing the difference between salinities of downcast and upcast in temperature-salinity domain. The new coefficients are validated by comparison with salinities measured by a salinometer, AUTOSAL 8400B. An accurate correction for the thermal-lag is critical in identifying water masses at intermediate depth in the East/japan Sea.

  • PDF

Hydrography around Dokdo

  • Chang, Kyung-Il;Kim, Youn-Bae;Suk, Moon-Sik;Byun, Sang-Kyung
    • Ocean and Polar Research
    • /
    • v.24 no.4
    • /
    • pp.369-389
    • /
    • 2002
  • CTD data taken in the Ulleung Basin between 1996 and 2001 are analyzed to understand the hydrography around Dokdo. Major features occurring in the Ulleung Basin such as the path variability of the East Korean Warm Current (EKWC), the location and size of the Ulleung Warm Eddy (UWE) and the position of the Offshore Branch along the Japanese coast all influence the hydrography around Dokdo. The Dokdo area frequently lies in the eastern part of the meandering EKWC and the UWE that results in a filting of isolines sloping upwards to Dokdo in the Ulleung Interplain Gap (UIG) between Ulleungdo and Dokdo. Subsurface water near Dokdo then becomes colder and less saline than water near Ulleungdo. Two cases that are opposite to this general trend are also identified when the Dokdo area is directly affected by the EKWC and by a small scale eddy ffd by the Offshore Branch. High salinity cores and warm waters are then found near Dokdo with isolines sloping upwards to Ulleungdo. Freshening of the East Sea Intermediate Water was observed in the UIG when neither the EKWC nor the UWE was developed in the Ulleung Basin during June-November 2000.

A multilayer Model for Dynamics of Upper and Intermediate Layer Circulation of the East Sea (동해의 상, 중층 순환 역학에 대한 다층모델)

  • 승영호;김국진
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 1995
  • A simple layer model based on isophcnal coordinate is applied to the East Sea to examine the dynamics of circulation. The results confirm the existing knowledge about role of inflow-outflow and wind in driving the circulation. It is found, however, that the buoyancy flux generates quite different circulation pattern; it enhances the inflow-outflow driven circulation and has a convective nature. The circulation considering all these effects resembles the schematic one presently known. In the circulation, the intermediate layer is outcropped in the north off the northern boundary, ventilated here and flows cyclonically in the northern part of basin. This water, however, does not flow southward directly because of the strong eastward (separating from the coast) current in the layer above. This water also loses its potential vorticity while traveling around the periphery of the outcropping region and is thus characterized by minimum potential vorticity in the interior of the basin.

  • PDF

Chemical Characteristics of the East sea Intermediate Water in the Ulleung Basin (울릉분지 해역 동해 중층수의 화학적 특성)

  • 김경렬;이태식
    • 한국해양학회지
    • /
    • v.26 no.3
    • /
    • pp.278-290
    • /
    • 1991
  • A synoptic survey of chemical properties was carried out at 21 stations in the Ulleung Basin in May 1988 on board T/V HANBADA. Vertical structures of typical profiles are: surface mixedlayer waters in the upper 30∼40 m with depleted nutrients concentrations, thermocline waters with rapid variations in all physical and chemical properties. and deep Waters below 200 m which are nearly homogeneous. Along the northern section at 37$^{\circ}$12'N. The salinity minimum layer was observed at about 190m. which characterize the East Sea Intermediate Water (ESIW). The dissolved oxygen concentration in this layer was about 230∼ 275uM, lower than 290uM (6.5ml/l) which is the previously known characteristics of the ESIW. However, apparent oxygen utilization (AOU), nitrate, phosphate and silicate show systematically low concentration in the salinity-minimum layer. The low values of AOU and all the nutrients associated with the salinity-minimum, may be useful to identify the ESIW and serve as a new tracer in the East Sea.

  • PDF