• Title/Summary/Keyword: Earthquake loading

Search Result 748, Processing Time 0.03 seconds

An Experimental Study on the Liquefaction Resistance Strength Using Real Earthquake Loadings Considering Seismic Magnitude in Moderate Earthquake Region (실지진하중을 이용한 중진지역에서의 액상화 저항강도에 관한 실험적 연구)

  • 김수일;최재순;박성용;박근보;심재욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.569-576
    • /
    • 2003
  • Based on the equivalent uniform stress concept Presented by Seed and Idriss, sinusoidal cyclic loads which simplified earthquake loads have been applied in evaluating the liquefaction resistance strength experimentally. However, the liquefaction resistance strength of soil based on the equivalent uniform stress concept can not exactly reflect the dynamic characteristics of the irregular earthquake motion. The liquefaction assessment method which was invented by using the equivalent uniform stress concept is suitable for the severe earthquake region such as Japan or USA, so the proper method to Korea is needed. In this study, estimation of the resistance to liquefaction was conducted by applying real earthquake loading to the cyclic triaxial test. From the test results, the characteristics of the fine sand under moderate earthquake were analyzed and compared with the results under strong earthquakes. Typically real earthquake loads used in this study are divided into two types - impact type and vibration type. Furthermore, results of the liquefaction resistance strength based on the equivalent uniform stress concept and tile concept using real earthquake loading were compared.

  • PDF

Numerical study on fire resistance of cyclically-damaged steel-concrete composite beam-to-column joints

  • Ye, Zhongnan;Heidarpour, Amin;Jiang, Shouchao;Li, Yingchao;Li, Guoqiang
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.673-688
    • /
    • 2022
  • Post-earthquake fire is a major threat since most structures are designed allowing some damage during strong earthquakes, which will expose a more vulnerable structure to post-earthquake fire compared to an intact structure. A series of experimental research on steel-concrete composite beam-to-column joints subjected to fire after cyclic loading has been carried out and a clear reduction of fire resistance due to the partial damage caused by cyclic loading was observed. In this paper, by using ABAQUS a robust finite element model is developed for exploring the performance of steel-concrete composite joints in post-earthquake fire scenarios. After validation of these models with the previously conducted experimental results, a comprehensive numerical analysis is performed, allowing influential parameters affecting the post-earthquake fire behavior of the steel-concrete composite joints to be identified. Specifically, the level of pre-damage induced by cyclic loading is regraded to deteriorate mechanical and thermal properties of concrete, material properties of steel, and thickness of the fire protection layer. It is found that the ultimate temperature of the joint is affected by the load ratio while fire-resistant duration is relevant to the heating rate, both of which change due to the damage induced by the cyclic loading.

Rotational capacity of pre-damaged I-section steel beams at elevated temperatures

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.53-66
    • /
    • 2017
  • Structures submitted to Fire-After-Earthquake loading situations, are first experiencing inelastic deformations due to the seismic action and are then submitted to the thermal loading. This means that in the case of steel framed structures, at the starting point of the fire, plastic hinges have already been formed at the ends of the beams. The basic objective of this paper is the evaluation of the rotational capacity of steel I-section beams damaged due to prior earthquake loading, at increased temperatures. The study is conducted numerically and three-dimensional models are used in order to capture accurately the nonlinear behaviour of the steel beams. Different levels of earthquake-induced damage are examined in order to study the effect of the initial state of damage to the temperature-evolution of the rotational capacity. The study starts with the reference case where the beam is undamaged and in the sequel cyclic loading patterns are taken into account, which represent earthquakes loads of increasing magnitude. Additionally, the study extends to the evaluation of the ultimate plastic rotation of the steel beams which corresponds to the point where the rotational capacity of the beam is exhausted. The aforementioned value of rotation can be used as a criterion for the determination of the fire-resistance time of the structure in case of Fire-After-Earthquake situations.

Post-earthquake capacity evaluation of R/C buildings based on pseudo-dynamic tests

  • Kang, Dae-Eon;Yi, Waon-Ho
    • Structural Engineering and Mechanics
    • /
    • v.24 no.1
    • /
    • pp.91-105
    • /
    • 2006
  • In this paper, post-earthquake capacity evaluation method of reinforced concrete buildings was studied. Substructure pseudo-dynamic test and static loading test of first story column in a four-story R/C building was carried out in order to investigate the validity of the evaluation method proposed in the Damage Assessment Guideline (JBDPA 2001). In pseudo-dynamic test, different levels of damage were induced in the specimens by pre-loading, and input levels of seismic motion, at which the specimens reached to the ultimate stage, were examined. From the experimental result, no significant difference in damage levels such as residual crack width between the specimens under static and pseudo-dynamic loading was found. It is shown that the seismic capacity reduction factors ${\eta}$ can provide a reasonable estimation of post-earthquake seismic capacity of R/C buildings suffered earthquakes.

Procedures of Biaxial Seismic Capacity Test and Seismic Performance Evaluation (수평이축방향 내진역량시험과 내진성능평가 절차)

  • 김재관;김익현;이재호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.453-460
    • /
    • 2001
  • The seismic capacity of columns usually has been tested in uniaxial loading condition. The seismic performance used to be evaluated under the same assumption. Since the real earthquake motion is multi-directional, the effects of multi-directional excitation on the seismic capacity of structures need to be carefully examined. In this paper, a frequency dependent alternate biaxial cyclic loading test is proposed as an evaluation method of seismic capacity under multi-directional excitation. Four test specimens were made and tested to study the degradation of strength, stiffness and ductility under biaxial loading condition. A multi- directional excitation. The capacity is obtained using frequency dependent alternate biaxial cyclic loading test. The orthogonal effect is taken into account by increasing the demand.

  • PDF

Comparative investigation of the costs and performances of torsional irregularity structures under seismic loading according to TEC

  • Gursoy, Senol
    • Computers and Concrete
    • /
    • v.14 no.4
    • /
    • pp.405-417
    • /
    • 2014
  • The poor seismic performance of reinforced concrete buildings during the latest earthquakes has become a serious issue in the building industry in Turkey. This case, designing new buildings without structural irregularities against earthquake loads reveals to be quite significant. This study mainly is focused on the effects of different torsional irregularities on construction costs and earthquakes performance of reinforced concrete buildings. In that respect, structural torsional irregularities are investigated based on the Turkish Earthquake Code. The study consists of major eight main parametric models. In this models consist of totally 49 models together with the variations in the number of storey. With this purpose, the earthquake performances and construction costs (especially steel quantities) of reinforced concrete buildings which having different structural torsional irregularities were obtained with the help of Sta4-CAD program. Each model has been analyzed by both the methods of equivalent earthquake loading and dynamic analysis. The obtained results reveal that the model-1 which has lower torsional irregularity coefficient shows the best earthquake performance owing to its regular plan geometry. Also, economical comparisons on costs of the torsional irregularity are performed, and results-recommendations are given.

Evaluation of Ductility and Damage Ratio for Reinforced Concrete Bridge Piers (철근콘크리트 교각의 연성과 손상도 평가)

  • Park, Chang-Gyu;Lee, Dae-Hyoung;Lee, Eun-Hee;Kim, Hoon;Chung, Young-Soo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.197-204
    • /
    • 2002
  • The resent earthquakes in worldwide have caused extensive damage to highway reinforced concrete bridge piers. It has been observed in the Korean Peninsula that the number of minor or low earthquake motions have increased year by year. Since the concern about the earthquake hazards is increased, the objective of this research is to evaluate the damage of reinforced concrete bridge piers subjected to probable earthquake motions. Experimental investigation was conducted to study the seismic performance of the full-scale specimens in size D=1.2m H=4.8m, which were constructed with different longitudinal lap splice and loading pattern, through the quasi-static test and the pseudo-dynamic test. It is thought that this result could contribute to establish the retrofit decision-making and disaster planning of reinforced concrete bridge piers in earthquake regions. And it could be also possible to quantify the damage of reinforced concrete bridge piers under cyclic loading

  • PDF

A Study on Liquefaction Assessment of Moderate Earthquake Region concerning Earthquake Magnitude of Korea (국내 지진규모를 고려한 중진 지역에서의 액상화 평가방법에 관한 연구)

  • Kim, Soo-Il;Park, Keun-Bo;Park, Seong-Yong;Seo, Kyung-Bum
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.125-134
    • /
    • 2006
  • Conventional methods for the assessment of liquefaction potential were primary for severe earthquake regions $(M{\geq}7.5)$ such as North America and Japan. In Korea, an earthquake related research has started in 1997, but most contents in the guidelines were still quoted from literature reviews of North America and Japan, which are located in strong earthquake region. Those are not proper in a moderate earthquake regions including Korea. Also the equivalent uniform stress concept (Seed & Idriss, 1971) using regular sinusoidal loading which is used, in a conventional method for the assessment of liquefaction potential, can't reflect correctly the dynamic characteristics of real irregular earthquake motions. In this study, cyclic triaxial tests using irregular earthquake motions are performed with different earthquake magnitudes, relative densities, and fines contents. Assessment of liquefaction potential in moderate earthquake regions is discussed based on various laboratory test results. From the results, screening limits in seismic design were re-investigated and proposed using normalized maximum stress ratios under real irregular earthquake motions. Also from the tests using constant wedge loading and incremental wedge loading, the characteristics of liquefaction resistance of saturated sand under irregular ground motions are investigated.

Testing of RC Corner Beam-column Joints under Bidirectional Loading (이방향 하중을 받는 모서리 보-기둥 접합부의 내진성능 평가)

  • Han, Sang Whan;Chang, Yong Seok;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.189-196
    • /
    • 2020
  • In this study, two full-scale gravity load-designed reinforced concrete corner beam-column joints were tested by being subjected to uniand bi-directional cyclic lateral loading. The test variable was loading type: uni- or bi-directional loading. To investigate the effect of the loading type on the cyclic behavior of joint specimens, damage progression, force-deformation relation, contribution of joint deformation to total drift, joint stress-strain response, and cumulative energy dissipation were investigated. The test data suggest that bidirectional loading can amplify damage accumulation in the joint region.

Influence of axial load and loading path on the performance of R.C. bridge piers

  • Kehila, Fouad;Bechtoula, Hakim;Benaouar, Djillali
    • Computers and Concrete
    • /
    • v.15 no.4
    • /
    • pp.563-588
    • /
    • 2015
  • Piers are the most vulnerable part of a bridge structure during an earthquake event. During Kobe earthquake in 1995, several bridge piers of the Hanshin Expressway collapsed for more than 600m of the bridge length. In this paper, the most important results of an experimental and analytical investigation of ten reinforced concrete bridge piers specimens with the same cross section subjected to constant axial (or variable) load and reversed (or one direction) cycling loading are presented. The objective was to investigate the main parameters influencing the seismic performance of reinforced concrete bridge piers. It was found that loading history and axial load intensity had a great influence on the performance of piers, especially concerning strength and stiffness degradation as well as the energy dissipation. Controlling these parameters is one of the keys for an ideal seismic performance for a given structure during an eventual seismic event. Numerical models for the tested specimens were developed and analyzed using SeismoStruct software. The analytical results show reasonable agreement with the experimental ones. The analysis not only correctly predicted the stiffness, load, and deformation at the peak, but also captured the post-peak softening as well. The analytical results showed that, in all cases, the ratio, experimental peak strength to the analytical one, was greater than 0.95.