• 제목/요약/키워드: Earthquake level

검색결과 688건 처리시간 0.024초

Investigating the Effect of Prior Damage on the Post-earthquake Fire Resistance of Reinforced Concrete Portal Frames

  • Ronagh, Hamid Reza;Behnam, Behrouz
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.209-220
    • /
    • 2012
  • Post-earthquake fire (PEF) can lead to a rapid collapse of buildings that have been partially damaged as a result of a prior earthquake. Almost all standards and codes for the design of structures against earthquake ignore the risk of PEF, and thus buildings designed using those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the immediate occupancy (IO), life safety (LS) and collapse prevention (CP) performance levels of two portal frames, after they are pushed to arrive at a certain level of displacement corresponding to the mentioned performance level. This investigation is followed by a fire analysis of the damaged frames, examining the time taken for the damaged frames to collapse. As a point of reference, a fire analysis is also performed for undamaged frames and before the occurrence of earthquake. The results indicate that while there is minor difference between the fire resistances of the fire-alone situation and the frames pushed to the IO level of performance, a notable difference is observed between the fire-alone analysis and the frames pushed to arrive at LS and CP levels of performance and exposed to PEF. The results also show that exposing only the beams to fire results in a higher decline of the fire resistance, compared to exposing only the columns to fire. Furthermore, the results show that the frames pushed to arrive at LS and CP levels of performance collapse in a global collapse mode laterally, whereas at the IO level of performance and fire-alone situation, the collapse mechanism is mostly local through the collapse of beams. Whilst the investigation is conducted for a certain class of portal frames, the results confirm the need for the incorporation of PEF into the process of analysis and design, and provide some quantitative measures on the level of associated effects.

Methodology for investigating the behavior of reinforced concrete structures subjected to post earthquake fire

  • Behnam, Behrouz;Ronagh, Hamid R.;Baji, Hassan
    • Advances in concrete construction
    • /
    • 제1권1호
    • /
    • pp.29-44
    • /
    • 2013
  • Post earthquake fire (PEF) can lead to the collapse of buildings that are partially damaged in a prior ground-motion that occurred immediately before the fire. The majority of standards and codes for the design of structures against earthquake ignore the possibility of PEF and thus buildings designed with those codes could be too weak when subjected to a fire after an earthquake. An investigation based on sequential analysis inspired by FEMA356 is performed here on the Life-Safety performance level of structures designed to the ACI 318-08 code after they are subjected to two different earthquake levels with PGA of 0.35 g and 0.25 g. This is followed by a four-hour fire analysis of the weakened structure, from which the time it takes for the weakened structure to collapse is calculated. As a benchmark, the fire analysis is also performed for undamaged structure and before occurrence of earthquake. The results show that the vulnerability of structures increases dramatically when a previously damaged structure is exposed to PEF. The results also show the damaging effects of post earthquake fire are exacerbated when initiated from second and third floor. Whilst the investigation is for a certain class of structures (regular building, intermediate reinforced structure, 3 stories), the results confirm the need for the incorporation of post earthquake fire in the process of analysis and design and provides some quantitative measures on the level of associated effects.

포항지진에 의한 필로티 건축물 피해조사 및 피해원인 분석 (Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake)

  • 김주찬;신승훈;오상훈
    • 대한건축학회논문집:구조계
    • /
    • 제35권3호
    • /
    • pp.3-10
    • /
    • 2019
  • On November 15, 2017, an earthquake($M_L5.4$) occurred in Pohang. Pohang earthquake was the second largest earthquake since earthquake was observed in Korea, but structural damage caused by earthquake was biggest. Structural damage caused by Pohang earthquake was mainly caused by schools and pilotis, above all damage to pilotis was outstanding. This is because area where pilotis structures are concentrated is located near epicenter, and seismic performance of pilotis structures is not excellent compared with general structures. In this study, described results of damage investigation and analysis of damage causes through analysis of pilotis Structures on 131 buildings that were investigated immediately after Pohang earthquake. In addition, cause of damage was analyzed through analysis of seismic wave. Investigation site was selected to Jangseong-dong, where damage occurred in large numbers. Damage level was classified into A, B, and C level by measuring residual crack width and story drift of structural members.

고준위 폐기물 처분용기 내진 해석 모델 개발 (Development of an Earthquake-Resistant Model for a High-Level Waste Disposal Canister)

  • 최영철;윤찬훈;김현아;최희주
    • 터널과지하공간
    • /
    • 제24권4호
    • /
    • pp.316-324
    • /
    • 2014
  • 고준위 방사성 폐기물 처분시스템은 지하 500 m 심도에서 암반에 터널을 뚫어 고준위폐기물 처분용기를 넣고 주위를 완충재로 매우는 형태이다. 많은 통계 자료에 의하면 한반도에서 매년 지진이 증가하는 추세이며, 지진이 발생할 경우 지하에서 발생된 전단력에 의해 처분용기가 손상될 수 있다. 더 나아가 방사성 유해물질이 유출되어 큰 환경 문제가 유발될 수 있다. 이에 본 논문에서는 지진에 대해 안전하게 보호할 수 있는 방법으로 내진형 완충재를 개발하였다. 내진 성능에 영향을 미치는 주요인자를 분석하여 내진형 완충재를 설계하였고, ABAQUS를 이용하여 전단해석모델을 개발하여 내진형 완충재의 성능을 평가하였다.

Seismic response analysis of embankment dams under decomposed earthquakes

  • Nasiri, Fatemeh;Javdanian, Hamed;Heidari, Ali
    • Geomechanics and Engineering
    • /
    • 제21권1호
    • /
    • pp.35-51
    • /
    • 2020
  • In this study, the seismic response analysis of embankment dams was investigated through numerical modeling. The seismic behavior of dams under main earthquake records and wavelet-based records were studied. Earthquake records were decomposed using de-noising method (DNM) and down-sampling method (DSM) up to five levels. In decomposition process, low and high frequencies of the main earthquake record were separated into two signals. Acceleration response, spectral acceleration, and Fourier amplitude spectrum at the crest of embankment dams under different decomposition levels were evaluated. The seismic behavior under main and decomposed earthquake records was compared. The results indicate an acceptable agreement between the seismic responses of embankment dams under wavelet-based decomposed records and main earthquake motions. Dynamic analyses show that the DNM-based decomposed earthquake records have a better performance compared to DSM-based records. DNM-based records up to level 4 and DSM-based records up to level 2 have a high accuracy in assessment of seismic behavior of embankment dams. The periods corresponding to the maximum values of acceleration spectra and the frequencies corresponding to the maximum values of Fourier amplitude spectra of embankment dam crest under main and decomposed records are in good agreement. The results demonstrate that the main earthquake records can be replaced by wavelet-based decomposed records in seismic analysis of embankment dams.

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

지진레벨의 증가가 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연 료 집합체에 미치는 영향 (The Effect of Seismic Level Increase on the Reactor Vessel Internals and Fuel Assemblies for the Korean Standard Suclear Power Plant)

  • ;정명조;박윤원;이정배
    • 소음진동
    • /
    • 제7권1호
    • /
    • pp.33-41
    • /
    • 1997
  • 경수로형 원자력발전소 표준화 작업의 일환으로 만들어진 한국표준형 원자력 발전소는 그 건설부지를 한반도뿐만 아니라 인접 아시아국가의 여러곳을 목표로 하고 있으며 이와 관련하여 안전정지지진의 레벨을 0.3g로 증가시키려는 시도가 계획되고 있다. 본 연구에서는 이와 같은 지진레벨 증가가 기존의 0.2g로 설계된 원자로 내부 구조물과 핵연료집합체에 미치는 영향을 평가하였다. 운전기준지진 및 안전정지지진의 응답을 비교함으로써 비선형 응답특성을 조사하였고 한국표준형 원자력발전소의 원자로 내부구조물 및 핵연료집합체의 설계 타당성에 대하여 언급하였다.

  • PDF

강구조물의 구조요소 및 구조계에 대한 지진손상도 해석 (Seismic Damage Analysis for Element-Level and System-Level of Steel Structures)

  • 송종걸;윤정방;이동근
    • 한국지진공학회논문집
    • /
    • 제2권1호
    • /
    • pp.95-111
    • /
    • 1998
  • 본 연구에서 구조요소 및 구조계에 대한 지진손상 해석방법의 개념 및 과정을 연구하였다. 구조요소에 대한 지진손상도 해석은 구조요소나 단자유도계에 관한 기존의 방법으로 가장 널리사용되고 있는 Park & Ang 방법에 의하여 예제구조물에 대하여 수행하였다. 구조계에 대한 지진손상도 해석을 수행하기 위해서는 두 가지의 과정을 사용하였다. 첫 번째 과정은 구조계에 해당하는 지진응답을 구조계 대표응답법과 등가단자유도계 응답법을 이용하여 구한 후, 구조계의 지진손상도는 기존의 단자유도계나 구조요소에 관한 방법을 이용하여 구조계의 지진응답으로부터 구한다. 두 번째 구조요소에 대한 지진손상도 해석결과를 손상지수 조합법을 이용하여 선형적으로 조합하여 구조계의 지진손상도를 구한다. 각 방법의 유용성은 몇 개의 다른 지진과 예제구조물에 대하여 비교를 통하여 연구하였다.

  • PDF

면진 원전 면진-비면진구간 연결 배관의 내진성능 평가 (Seismic Performance Evaluation of Piping System Crossing the Isolation Interface in Seismically Isolated NPP)

  • 함대기;박준희;최인길
    • 한국지진공학회논문집
    • /
    • 제18권3호
    • /
    • pp.141-150
    • /
    • 2014
  • A methodology to evaluate the seismic performance of interface piping systems that cross the isolation interface in the seismically isolated nuclear power plant (NPP) was developed. The developed methodology was applied to the safety-related interface piping system to demonstrate the seismic performance of the target piping system. Not only the seismic performance for the design level earthquakes but also the performance for the beyond design level earthquakes were evaluated. Two artificial seismic ground input motions which were matched to the design response spectra and two historical earthquake ground motions were used for the seismic analysis of piping system. The preliminary performance evaluation results show that the excessive relative displacements can occur in the seismically isolated piping system. If the input ground motion contained relatively high energy in the low frequency region, we could find that the stress response of the piping system exceed the allowable stress level even though the intensity of the input ground motion is equal to the design level earthquake. The structural responses and seismic performances of piping system were varied sensitively with respect to the intensities and frequency contents of input ground motions. Therefore, for the application of isolation system to NPPs and the verification of the safety of piping system, the seismic performance of the piping system subjected to the earthquake at the target NPP site should be evaluated firstly.

구조물 및 기기의 한계성능 평가를 위한 고진동수 지진 특성을 반영한 응답스펙트럼 형상 (A Shape of the Response Spectrum for Evaluation of the Ultimate Seismic Capacity of Structures and Equipment including High-frequency Earthquake Characteristics)

  • 임승현;최인길
    • 한국지진공학회논문집
    • /
    • 제24권1호
    • /
    • pp.1-8
    • /
    • 2020
  • In 2016, an earthquake occurred at Gyeongju, Korea. At the Wolsong site, the observed peak ground acceleration was lower than the operating basis earthquake (OBE) level of Wolsong nuclear power plant. However, the measured spectral acceleration value exceeded the spectral acceleration of the operating-basis earthquake (OBE) level in some sections of the response spectrum, resulting in a manual shutdown of the nuclear power plant. Analysis of the response spectra shape of the Gyeongju earthquake motion showed that the high-frequency components are stronger than the response spectra shape used in nuclear power plant design. Therefore, the seismic performance evaluation of structures and equipment of nuclear power plants should be made to reflect the characteristics of site-specific earthquakes. In general, the floor response spectrum shape at the installation site or the generalized response spectrum shape is used for the seismic performance evaluation of structures and equipment. In this study, a generalized response spectrum shape is proposed for seismic performance evaluation of structures and equipment for nuclear power plants. The proposed response spectrum shape reflects the characteristics of earthquake motion in Korea through earthquake hazard analysis, and it can be applied to structures and equipment at various locations.