• Title/Summary/Keyword: Earthquake intensity

Search Result 303, Processing Time 0.022 seconds

Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems (쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

Dynamic Analysis of Multi-Span Continuous Bridges under Combined Effects of Earthquake and Local Scour (지진과 세굴의 복합적인 영향을 받는 연속교의 동적거동분석)

  • 김상효;마호성;이상우;심정욱
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.166-173
    • /
    • 2002
  • Seismic bridge failure due to the combined effects of earthquake and local scour are examined in probabilistic perspectives. The seismic responses of multi-span continuous bridge with deep foundations are evaluated with a simplified mechanical model. The probabilistic local scour depths around the deep foundations are estimated by using the Monte Carlo simulation. From the simulation results, it is found that seismic responses of a bridge slightly increase due to the local scour effect. The effect of local scour on the global motion of the continuous bridge is found to be significant under weak seismic intensity. In addition, the duration to regain its original foundation stiffness is critical in estimating the probability of foundation failure under earthquake. Therefore, the duration in recovering the foundation stiffness should be determined reasonably and the safely of the whole bridge system should be evaluated by considering the scour effect.

  • PDF

Dynamic Property Evaluation of Friction Pendulum Isolation Bearing (마찰진자 베어링의 동적 특성평가)

  • 이경진;김갑순;서용표
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.465-472
    • /
    • 2003
  • The main concept of base isolation system is to reduce the member forces by decreasing the earthquake forces transmitted to superstructure instead of the conventional techniques of strengthening the structural members. There are two important advantages in friction pendulum systems. The functions of carrying the vertical load and of providing horizontal stiffness are effectively separated. This results in a more stable system that eliminates the need of a fail-safe mechanism. Friction pendulum systems are less sensitive to variations in the frequency content of ground excitation and tend to limit the intensity of the farce imparted to the superstructure. This study investigates the friction coefficients on the FPS test specimens according to the velocity, bearing pressure and test waveform.

  • PDF

Seismic performance of skewed highway bridges using analytical fragility function methodology

  • Bayat, M.;Daneshjoo, F.
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.723-740
    • /
    • 2015
  • In this study, the seismic performance of skewed highway bridges has been assessed by using fragility function methodology. Incremental Dynamic Analysis (IDA) has been used to prepare complete information about the different damage states of a 30 degree skewed highway bridge. A three dimensional model of a skewed highway bridge is presented and incremental dynamic analysis has been applied. The details of the full nonlinear procedures have also been presented. Different spectral intensity measures are studied and the effects of the period on the fragility curves are shown in different figures. The efficiency, practicality and proficiency of these different spectral intensity measures are compared. A suite of 20 earthquake ground motions are considered for nonlinear time history analysis. It has been shown that, considering different intensity measures (IM) leads us to overestimate or low estimate the damage probability which has been discussed completely.

Data-driven modeling of optimal intensity measure of soil-nailed wall structures

  • Massoumeh Bayat;Mahdi Bayat;Mahmoud Bayat
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.85-92
    • /
    • 2023
  • This article examines the seismic vulnerability of soil nail wall structures. Detailed information regarding finite element modeling has been provided. The fragility function evaluates the relationship between ground motion intensities and the probability of surpassing a specific level of damage. The use of incremental dynamic analysis (IDA) has been applied to the soil nail wall against low to severe ground motions. In the nonlinear dynamic analysis of the soil nail wall, a set of twenty seismic ground motions with varying PGA ranges are used. The numerical results demonstrate that the soil-nailed wall reaction is extremely sensitive to earthquake ground vibrations under different intensity measures (IM). In addition, the analytical fragility curve is provided for various intensity values.

Peak floor acceleration prediction using spectral shape: Comparison between acceleration and velocity

  • Torres, Jose I.;Bojorquez, Eden;Chavez, Robespierre;Bojorquez, Juan;Reyes-Salazar, Alfredo;Baca, Victor;Valenzuela, Federico;Carvajal, Joel;Payaan, Omar;Leal, Martin
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.551-562
    • /
    • 2021
  • In this study, the generalized intensity measure (IM) named INpg is analyzed. The recently proposed proxy of the spectral shape named Npg is the base of this intensity measure, which is similar to the traditional Np based on the spectral shape in terms of pseudo-acceleration; however, in this case the new generalized intensity measure can be defined through other types of spectral shapes such as those obtained with velocity, displacement, input energy, inelastic parameters and so on. It is shown that this IM is able to increase the efficiency in the prediction of nonlinear behavior of structures subjected to earthquake ground motions. For this work, the efficiency of two particular cases (based on acceleration and velocity) of the generalized INpg to predict the peak floor acceleration demands on steel frames under 30 earthquake ground motions with respect to the traditional spectral acceleration at first mode of vibration Sa(T1) is compared. Additionally, a 3D reinforced concrete building and an irregular steel frame is used as a basis for comparison. It is concluded that the use of velocity and acceleration spectral shape increase the efficiency to predict peak floor accelerations in comparison with the traditional and most used around the world spectral acceleration at first mode of vibration.

Shaking table test of pounding tuned mass damper (PTMD) on a frame structure under earthquake excitation

  • Lin, Wei;Wang, Qiuzhang;Li, Jun;Chen, Shanghong;Qi, Ai
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.545-553
    • /
    • 2017
  • A pounding tuned mass damper (PTMD) can be considered as a passive device, which combines the merits of a traditional tuned mass damper (TMD) and a collision damper. A recent analytical study by the authors demonstrated that the PTMD base on the energy dissipation during impact is able to achieve better control effectiveness over the traditional TMD. In this paper, a PTMD prototype is manufactured and applied for seismic response reduction to examine its efficacy. A series of shaking table tests is conducted in a three-story building frame model under single-dimensional and two-dimensional broadband earthquake excitations with different excitation intensities. The ability of the PTMD to reduce the structural responses is experimentally investigated. The results show that the traditional TMD is sensitive to input excitations, while the PTMD mostly has improved control performance over the TMD to remarkably reduce both the peak and root-mean-square (RMS) structural responses under single-dimensional earthquake excitation. Unlike the TMD, the PTMD is found to have the merit of maintaining a stable performance when subjected to different earthquake loadings. In addition, it is also indicated that the performance of the PTMD can be enhanced by adjusting the initial gap value, and the control effectiveness improves with the increasing excitation intensity. Under two-dimensional earthquake inputs, the PTMD controls remain outperform the TMD controls; however, the oscillation of the added mass is observed during the test, which may induce torsional vibration modes of the structure, and hence, result in poor control performance especially after a strong earthquake period.

Preliminary Study of the Tsunami Effect from the Great East Japan Earthquake using the World First Geostationary Ocean Color Imager (GOCI) (천리안 해색위성 GOCI를 이용한 일본 동부 지진해일 영향 연구)

  • Son, Young-Baek;Ryu, Joo-Hyung
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.2
    • /
    • pp.255-266
    • /
    • 2012
  • The enormous disaster (Friday nightmare) occurred at 14:46 (JST) (05:46 UTC) on 11 March 2011, officially named "the 2011 Tohoku Earthquake and Tsunami". To monitor the variations of the marine environment after the earthquake, we used chlorophyll and Rrs(555) of GOCI and MODIS ocean color satellite data during March ~ May 2011. Before the earthquake, chlorophyll and Rrs(555) were relatively low around the Sendai areas. After the earthquake;their concentration and intensity were suddenly increased along the coast and the water column was disturbed by the tsunami wave. The severe distortions influenced by the tsunami occurred at less than 30 m water depth and the variations in offshore were difficult to discern the effect of the tsunami. The disturbance by the tsunami was still remained in the terrestrial environment after one month. However the ocean environment returned to the former condition in almost two month later.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Evaluation of seismic design provisions for acceleration-sensitive non-structural components

  • Surana, Mitesh
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.611-623
    • /
    • 2019
  • A set of mid-rise bare and uniformly infilled reinforced-concrete frame buildings are analyzed for two different seismic intensities of ground-motions (i.e., 'Design Basis Earthquake' and 'Maximum Considered Earthquake') to study their floor response. The crucial parameters affecting seismic design force for acceleration-sensitive non-structural components are studied and compared with the guidelines of the European and the United States standards, and also with the recently developed NIST provisions. It is observed that the provisions of both the European and the United States standards do not account for the effects of the period of vibration of the supporting structure and seismic intensity of ground-motions and thereby provides conservative estimates of the in-structure amplification. In case of bare frames, the herein derived component amplification factors for both the design basis earthquake and the maximum considered earthquake exceeds with their recommended values in the European and the United States standards for non-structural components having periods in vicinity of the higher modes of vibration, whereas, in case of infilled frames, component amplification factors exceeds with their recommended value in the European standard for non-structural components having periods in vicinity of the fundamental mode of vibration, and only for the design basis earthquake. As a consequence of these observations, as well as capping on the design force (in case of United states standard and NIST provisions), in case of the design basis earthquake, the combined amplification factor is underestimated for non-structural components having periods in vicinity of the higher modes of vibration of bare frames, and also for non-structural components having periods in vicinity of the fundamental mode of vibration of infilled frames. At the maximum considered earthquake demand, excepting non-structural components having periods in vicinity of the higher modes of vibration of bare frames, all provisions generally provide conservative estimates of the design floor accelerations.