• Title/Summary/Keyword: Earthquake behavior

Search Result 1,453, Processing Time 0.024 seconds

Earthquake behavior of M1 minaret of historical Sultan Ahmed Mosque (Blue Mosque)

  • Kocaturk, Turgut;Erdogan, Yildirim Serhat
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.539-558
    • /
    • 2016
  • Minarets are almost the inevitable part of Mosques in Islam and according to some, from a philosophical point of view, today they symbolize the spiritual elevation of man towards God. Due to slenderness, minarets are susceptible to earthquakes and wind loads. They are mostly built in a masonry style by using cut limestone blocks or occasionally by using bricks. In this study, one minaret (M1 Minaret) of one of the charmest mosques of Turkey, Sultan Ahmed Mosque, popularly known as Blue Mosque, built between 1609 and 1616 on the order of Sultan Ahmed by the architect Mehmet Agha is investigated under some registered earthquake loads. According to historical records, a great earthquake hit Istanbul and/or its close proximity approximately every 250 years. Ottomans tackled with the problem of building earthquake resistant, slender minarets by starting to use forged iron connectors with lead as a filler to fix them to the upper and lower and to adjacent stones instead of using traditional mortar only. Thus, the discrete stones are able to transfer tensile forces in some sense. This study investigates the contribution of lead to the energy absorption capacity of the minaret under extensive earthquakes occurred in the region. By using the software ANSYS/LS-DYNA in modelling and investigating the minaret nonlinearly, it is found out that under very big recorded earthquakes, the connectors of vertical cast iron-lead mechanism play very important role and help to keep the structure safe.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

Investigation of Structural Damage in Bearing Wall Buildings with Pilotis by 2017 Pohang Earthquake (2017 포항지진에 의한 필로티형 내력벽건물의 구조손상 분석)

  • Eom, Tae Sung;Lee, Seung Jae;Park, Hong Gun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.9-18
    • /
    • 2019
  • In 2017 Pohang Earthquake, a number of residential buildings with pilotis at their first level were severely damaged. In this study, the results of an analytical investigation on the seismic performance and structural damage of two bearing wall buildings with pilotis are presented. The vibration mode and lateral force-resisting mechanism of the buildings with vertical and plan irregularity were investigated through elastic analysis. Then, based on the investigations, methods of nonlinear modeling for walls and columns at the piloti level were proposed. By performing nonlinear static and dynamic analyses, structural damages of the walls and columns at the piloti level under 2017 Pohang Earthquake were predicted. The results show that the area and arrangement of walls in the piloti level significantly affected the seismic safety of the buildings. Initially, the lateral resistance of the piloti story was dominated mainly by the walls resisting in-plane shear. After shear cracking and yielding of the walls, the columns showing double-curvature flexural behavior contributed significantly to the residual strength and ductility.

Improvement of Spectral Displacement-Based Damage State Criteria of Existing Low-Rise, Piloti-Type Buildings (기존 저층 필로티 건물의 스펙트럼 변위 기반 손상도 기준 개선)

  • Kim, Taewan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.201-211
    • /
    • 2021
  • The Ministry of the Interior and Safety in Korea developed seismic fragility function for various building types in 2009. Damage states for most building types were determined by structural analyses of sample models and foreign references because actual cases damaged by earthquakes rarely exist in Korea. Low-rise, piloti-type buildings showed severe damage by brittle failure in columns due to insufficient stirrup details in the 2017 Pohang earthquake. Therefore, it is necessary to improve damage state criteria for piloti-type buildings by consulting actual outcomes from the earthquake. An analytical approach was conducted by developing analysis models of sample buildings reflecting insufficient stirrup details of columns to accomplish the purpose. The result showed that current spectral displacements of damage states for piloti-type buildings might be too large to estimate actual fragility. When the brittle behavior observed in the earthquake is reflected in the analysis model, one-fourth through one-sixth of current spectral displacements of damage states may be appropriate for existing low-rise, piloti-type buildings.

Effect on Dynamic Behavior of Group Piles with Changing Thickness of Pile Cap

  • Jeong, Kusic;Ahn, Sangro;Kim, Seongho;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.7
    • /
    • pp.5-11
    • /
    • 2018
  • Instead of a single pile, group piles are usually used for the pile foundation. If the earthquake occurs in the ground where group piles are installed, dynamic behavior of group piles are affected not only by interaction of piles and the ground movement but also by the pile cap. However, in Korea, the pile cap influence is not taken account into the design of group piles. Research on dynamic behavior of group piles has been performed only to verify interaction of piles and the ground and has not considered the pile cap as a factor. In this research, 1g shaking table model tests were performed to verify the thickness of the pile cap affects dynamic behavior of group piles that were installed in the ground where the earthquake would occur. The test results show that, as thickness of the pile cap increased, acceleration and horizontal displacement of the pile cap decreasd while vertical displacement of the pile cap increased. The results also showed that, among the group files tested, acceleration, horizontal displacement, and vertical displacement of the bearing pile are smaller than those of the friction pile.

Behavior of Steel Beam Connections under Cyclic Loading (반복하중을 받는 철골보 접합부의 거동)

  • 이승준;김상배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.23-32
    • /
    • 1999
  • Behavior of H-beam connections under cyclic loadings is investigated experimentally in this study. The purpose of this study is to study the effect of steel properties and coping shape on the hysteretic behavior of H-beam connections. Five beam-to-column connection specimens were fabricated and tested under cyclic loadings. The load-rotation curves of the beam connections were mainly obtained. Deformation capacity and energy dissipation capacity of the connections are compared each other. The connections fabricated from SS400 showed good deformability and energy dissipation capacity, but those from SM490 showed brittle fracture at the connection. The coping shape at the connections showed a little difference in cyclic behavior.

  • PDF

Dynamic Behavior Characteristics According to Arch Types of Arched Stone Bridge Subjected to Seismic Load (지진 하중을 받는 홍예교의 아치 형태에 따른 동적 거동 특성)

  • Kim, Ho-Soo;Lee, Seung-Hee;Jeon, Gun-Woo;Bang, Hyeok-Kyu
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.3
    • /
    • pp.45-55
    • /
    • 2018
  • The arched stone bridge has been continuously deteriorated and damaged by the weathering and corrosion over time, and also natural disaster such as earthquake has added the damage. However, masonry stone bridge has the behavior characteristics as discontinuum structure and is very vulnerable to lateral load such as earthquake. So, it is necessary to analyze the dynamic behavior characteristics according to various design variables of arched stone bridge under seismic loads. To this end, the arched stone bridge can be classified according to arch types, and then the discrete element method is applied for the structural modelling and analysis. In addition, seismic loads according to return periods are generated and the dynamic analysis considering the discontinuity characteristics is carried out. Finally, the dynamic behavior characteristics are evaluated through the structural safety estimation for slip condition.

Time Dependent Reliability Analysis of the Degrading RC Containment Structures Subjected to Earthquake Load (지진하중을 받는 RC 격납건물의 열화에 따른 신뢰성 해석)

  • 오병환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.233-240
    • /
    • 2000
  • Nuclear power plant structures may be exposed to aggressive environmental effects than may cause their strength and stiffness to decrease over their service lives, Although the physics of these damage mechanisms are reasonably well understood and quantitative evaluation of their effects on time-dependent structural behavior is possible in some instances such evaluations are generally very difficult and remain novel. The assessment of existing RC containment in nuclear power plants for continued service must provide quantitative evidence that they are able to withstand future extreme loads during a service period with an acceptable level of reliability. Rational methodologies to perform the reliability assessment can be developed from mechanistic models of structural deterioration using time-dependent structural reliability analysis to take earthquake loading uncertainties into account. The final goal of this study is to develop the reliability analysis of RC containment structures. The cause of the degrading is first clarified and the reliability assessment has been conducted. By introducing stochastic analysis based on random vibration theory the reliability analysis which can determine the failure probabilities has been established.

  • PDF

Effect of shear wall location in rigid frame on earthquake response of roof structure

  • Ishikawa, Koichiro;Kawasaki, Yoshizo;Tagawa, Kengo
    • Structural Engineering and Mechanics
    • /
    • v.11 no.6
    • /
    • pp.605-616
    • /
    • 2001
  • The purpose of this study is to investigate the effect of the shear wall location in rigid frames on the dynamic behavior of a roof structure due to vertical and horizontal earthquake motions. The study deals with a gabled long span beam supported by two story rigid frames with shear walls. The earthquake response analysis is carried out to study the responses of the roof: vibration mode, natural period, bending moment and horizontal shear force of the bearings. The study results in the following conclusions: First, a large horizontal stiffness difference between the side frames is caused by the shear wall location, which results in a large vertical vibration of the roof and a large shear force at the side bearings. Second, in this case, the seismic design method for ordinary buildings is not useful in determining the distribution of the static equivalent loads for the seismic design of this kind of long span structures.

3D Nonlinear Seismic Analysis of a Bridge Using Fiber Element (섬유요소를 이용한 교량의 3차원 지진해석)

  • 조정래;곽임종;조창백;김병석;김영진
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.141-146
    • /
    • 2002
  • In the present design concept, the nonlinear behavior of bridges is allowed under large earthquake. Therefore, demands for nonlinear analyses of bridges are increased more and more especially in the area of seismic assessment. It is, however, difficult to solve the problem how the nonlinearity of columns should be modelled. In this study, the fiber element Is adopted for model ins pier column. The element is a kind of structural elements like frame element, and it can model the distributed plasticity of plastic hinge. A 3 span continuos bridge is taken for seismic analysis. First, the nonlinear static analysis the column at fixed support are performed so that the characteristics of column is investigated. Second, the nonlinear dynamic analyses of the full bridge model is performed, considering 3 directional earthquake excitations.

  • PDF