• Title/Summary/Keyword: Earthquake Load

Search Result 1,008, Processing Time 0.18 seconds

Theoretical analysis on vibration characteristic of a flexible tube under the interaction of seismic load and hydrodynamic force

  • Lai, Jiang;He, Chao;Sun, Lei;Li, Pengzhou
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.654-659
    • /
    • 2020
  • The reliability of the spent fuel pool instrument is very important for the security of nuclear power plant, especially during the earthquake. The effect of the fluid force on the vibration characteristics of the flexible tube of the spent fuel pool instrument needs comprehensive analysis. In this paper, based on the potential flow theory, the hydrodynamic pressures acting on the flexible tube were obtained. A mathematical model of a flexible tube was constructed to obtain the dynamic response considering the effects of seismic load and fluid force, and a computer code was written. Based on the mathematical model and computer code, the maximum stresses of the flexible tube in both safe shutdown earthquake and operating basis earthquake events on the spent fuel pool with three typical water levels were calculated, respectively. The results show that the fluid force has an obvious effect on the stress and strain of the flexible tube in both safe shutdown earthquake and operating basis earthquake events.

Structural Effect Evaluation of an Apartment Building Due to the Water Tank under Earthquake Load (지진발생시 아파트 옥탑층 물탱크의 구조적 영향평가)

  • 정은호
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.29-40
    • /
    • 1999
  • High-rise building for dwelling has many factors to be considered in structural aspects. In particular, the higher the building, the bigger the lateral loads such as wind and earthquake due to its dynamic characteristics. Unlike the wind load, the earthquake load, even if the shape of the structures are similar, depends on structural characteristics and it is difficult to predict. For an apartment building, the water tank in the penthouse, due to its heavy weight, changes the behavior of a building when the earthquake occurs. The purpose of this study is to determine how the water tank affects the behavior of an apartment building when earthquake occurs. Dynamic analysis was accomplished on two cases - 1) water tank is considered 2) water tank is not considered - to understand how it affects the behavior of a high-rise apartment building. Structural design was accomplished to understand how the water tank and the peak acceleration affects each structural member. The effect of the water tank on the response of structure was large. Elsewhere the water tank has no effect on the design of a strutural member. However some structural members were affected when the peak acceleration of an earthquake is 0.4g.

  • PDF

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

Evaluation of Seismic Load Level in Korea based on Global Recorded Earthquake Ground Motions (세계지진기록에 근거한 우리나라의 지진하중 평가)

  • Hwang, Kyung Ran;Lee, Han Seon;Kim, Sung Jig
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.247-256
    • /
    • 2015
  • This paper briefly introduces the design seismic loads in Korea (KBC 2009). Then, over 10,000 recorded earthquake ground accelerograms, with their magnitude ranging from 4.0 to 8.0 and their epicentral distance ranging from 0 to 200 km, were used to examine the appropriateness of seismic load defined in Korea known as a low-to-moderate seismicity region. The following conclusions are drawn based on the results: (1) The effective peak ground accelerations (EPA) of recorded earthquake accelerograms under $M{\leq}6.0$ and $R{\geq}15km$ appear to be less than that of MCE in Korea for all site conditions defined in KBC 2009. (2) The design spectrum (two-thirds of the intensity of MCE) in KBC 2009 is comparable to those of earthquake records in the magnitude 6 - 7 and the epicentral distance less than 50 km. Therefore, (3) the intensity of Korean design earthquake is considered to be overly high since the Korea peninsula is generally conceived to be a low-seismicity region.

Experimental Study on the Seismic Performance of Continuous Bridge Model with Seismic Load Transmitting Devices (지진력 분산장치를 설치한 다경간 연속교의 내진성능향상에 관한 실험연구)

  • 배민혁;김재관;김익현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.409-414
    • /
    • 2003
  • A multi-span bridge model that is fixed in longitudinal direction at a single pier can be very vulnerable to the earthquake ground motion in longitudinal direction. If the seismic load exceeds the capacity of the pier, it can be severely damaged. However, such incident can be prevented if piers of movable support share the seismic load as setting up seismic load transmitting device. This study is performed to investigate seismic performance of continuous bridge model with seismic load transmitting devices which is proposed newly. It is found that continuous bridge model system with device is more effective about displacement control and seismic performance.

  • PDF

Evaluation of the Relationship Between Possible Earthquake Time History Shape Occurring in a Target Fault Using Pseudo-Basis Function (유사기저함수를 사용한 대상 단층에서 발생 가능 지진파 형태 사이의 관계 표현 방법 개발 및 포항 단층과 경주 단층 발생 지진에의 적용)

  • Park, Hyung Choon;Oh, Hyun Ju
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.139-145
    • /
    • 2023
  • It is essential to determine a proper earthquake time history as a seismic load in a seismic design for a critical structure. In the code, a seismic load should satisfy a design response spectrum and include the characteristic of a target fault. The characteristic of a fault can be represented by a definition of a type of possible earthquake time history shape that occurred in a target fault. In this paper, the pseudo-basis function is proposed to be used to construct a specific type of earthquake, including the characteristic of a target fault. The pseudo-basis function is derived from analyzing the earthquake time history of specific fault harmonic wavelet transform. To show the feasibility of this method, the proposed method was applied to the faults causing the Gyeong-Ju ML5.8 and Pohang ML5.3 earthquakes.

New Technique on the Improvement of Earthquake-Resistant Performance for the Retrofitting of Existing Reinforced Concrete Beam-Column Joints (철근콘크리트 보-기둥 접합부의 내진성능 개선 보강 신기술)

  • 하기주
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.73-81
    • /
    • 2004
  • In this study, experimental research was carried out to improve earthquake-resistant performance for the retrofitting of reinforced concrete beam-column joints using carbon fiber materials in existing reinforced concrete building. Six reinforced concrete beam-column joints were constructed and tested to evaluate the retrofitting effect of test variables, such as the retrofitting materials and retrofitting region(plastic hinge, beam-column joint) under load reversals. Test results show that retrofitting specimen(RPC-CP2, RPC-CR, RJC-CP, RJC-CR), using new materials(carbon fiber plate, carbon fiber rod and carbon fiber sheet), designed by the improvement of earthquake-resistant performance and ductility, attained more load-carrying capacity and stable hysteretic behavior.

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

A Seismic Analysis of Spent Fuel Handling Tool (사용후 핵연료 취급장비의 내진해석)

  • 김성종;이영신;김재훈;김남균
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1210-1215
    • /
    • 2002
  • The spent fuel handling tool is used to handle the refuel bundle and treated by hoist rope on the bridge crane. The new developed handling tool of NPP(Nuclear Power Plant) should be conformed the structural stability under earthquake condition. In this study, the stress and seismic analysis of the handling tool are performed by finite element method. Using the Floor Response Spectrum(FRS) obtained through the time history analysis, the modal and seismic analysis under Operating Basis Earthquake(OBE) and Safe Shutdown Earthquake(SSE) load conditions are carried out. Total 4 cases of different locations of the trolly and the hook are investigated. With the spring-damper element, the tension analysis of hoist rope is conducted. The stability of handling tool under earthquake load condition is conformed with regulatory guide.

  • PDF

Evaluation of Dynamic Behavior Characteristics of Cheomseongdae Considering Earthquake Load (지진 하중을 고려한 첨성대의 동적 거동 특성 평가)

  • Kim, Ho-Soo;Lee, Ha-Na
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.35-44
    • /
    • 2019
  • Recently, the occurrence frequency of earthquake has increased in Korea, and many cultural assets have been damaged. Cheomseongdae is a valuable cultural assets that must be preserved historically and culturally. But, the masonry structure such as Chemseongdae is vulnerable to lateral forces. Therefore, in this study, structural modeling and dynamic analysis are performed to reflect the ground state and structural form of Cheomseongdae. Also, discrete element analysis technique is applied and dynamic behavior characteristics are analyzed according to earthquake load. For this purpose, displacements and stresses according to locations are reviewed and then swelling and distortion are analyzed.