• Title/Summary/Keyword: Earth-Volume

Search Result 385, Processing Time 0.032 seconds

Comparative Analysis of Surface Heat Fluxes in the East Asian Marginal Seas and Its Acquired Combination Data

  • Sim, Jung-Eun;Shin, Hong-Ryeol;Hirose, Naoki
    • Journal of the Korean earth science society
    • /
    • v.39 no.1
    • /
    • pp.1-22
    • /
    • 2018
  • Eight different data sets are examined in order to gain insight into the surface heat flux traits of the East Asian marginal seas. In the case of solar radiation of the East Sea (Japan Sea), Coordinated Ocean-ice Reference Experiments ver. 2 (CORE2) and the Objectively Analyzed Air-Sea Fluxes (OAFlux) are similar to the observed data at meteorological stations. A combination is sought by averaging these as well as the Climate Forecast System Reanalysis (CFSR) and the National Centers for Environmental Prediction (NCEP)-1 data to acquire more accurate surface heat flux for the East Asian marginal seas. According to the Combination Data, the annual averages of net heat flux of the East Sea, Yellow Sea, and East China Sea are -61.84, -22.42, and $-97.54Wm^{-2}$, respectively. The Kuroshio area to the south of Japan and the southern East Sea were found to have the largest upward annual mean net heat flux during winter, at -460- -300 and at $-370--300Wm^{-2}$, respectively. The long-term fluctuation (1984-2004) of the net heat flux shows a trend of increasing transport of heat from the ocean into the atmosphere throughout the study area.

Moist Air Density Calculation for Air Condition (공기 상태량에 대한 습공기 밀도 계산)

  • Kim, Jong-Woo
    • Transactions of the KSME C: Technology and Education
    • /
    • v.2 no.2
    • /
    • pp.105-111
    • /
    • 2014
  • Generally the lower part of the Earth's atmosphere, which is 20km above the ground, is called "air." The composition of this area is almost consistent consisting of nitrogen, oxygen, and other gases. Air density refers to the mass per unit volume of earth atmosphere. Though air is made of the mixed gases in a constant composition, the water vapor is one of the very changeable components. The density of moist air is lower than the dry one at the same temperature and pressure. As the density varies according to the pressure and temperature, this paper attempts to explore the main factors in the air quantity calculation by examining first the density calculation process according to the air property, and second the relation between the actual and standard air flow.

THE APPLICATION OF ARTIFICIAL NEURAL NETWORKS TO LANDSLIDE SUSCEPTIBILITY MAPPING AT JANGHUNG, KOREA

  • LEE SARO;LEE MOUNG-JIN;WON JOONG-SUN
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.294-297
    • /
    • 2004
  • The purpose of this study was to develop landslide susceptibility analysis techniques using artificial neural networks and then to apply these to the selected study area of Janghung in Korea. We aimed to verify the effect of data selection on training sites. Landslide locations were identified from interpretation of satellite images and field survey data, and a spatial database of the topography, soil, forest, and land use was constructed. Thirteen landslide-related factors were extracted from the spatial database. Using these factors, landslide susceptibility was analyzed using an artificial neural network. The weights of each factor were determined by the back-propagation training method. Five different training datasets were applied to analyze and verify the effect of training. Then, the landslide susceptibility indices were calculated using the trained back-propagation weights and susceptibility maps were constructed from Geographic Information System (GIS) data for the five cases. The results of the landslide susceptibility maps were verified and compared using landslide location data. GIS data were used to efficiently analyze the large volume of data, and the artificial neural network proved to be an effective tool to analyze landslide susceptibility.

  • PDF

Determination of the Optimal Strategy for Pump-And-Treat Method

  • Ko, Nak-Youl;Lee, Kang-Kun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.204-207
    • /
    • 2001
  • An optimization process for the design of groundwater remediation is developed by simultaneously considering the well location and the pumping rate. This process uses two independent models: simulation and optimization model. Groundwater flow and contaminant transport are simulated with MODFLOW and MT3D in simulation model. In optimization model, the location and pumping rate of each well are determined and evaluated by the genetic algorithm. In a homogeneous and symmetric domain, the developed model is tested using sequential pairs for pumping rate of each well, and the model gives more improved result than the model using sequential pairs. In application cases, the suggested optimal design shows that the main location of wells is on the centerline of contaminate distribution. The resulting optimal design also shows that the well with maximum pumping rate is replaced with the further one from the contaminant source along flow direction and that the optimal pumping rate declines when more cleanup time is given. But the optimal pumping rate is not linearly proportional to the cleanup time and the minimum total pumping volume does not coincide with the optimal pumping rate.

  • PDF

Optical alignment of a high-resolution optical earth observation camera for small satellites (소형 위성용 고해상도 광학카메라의 광학정렬)

  • Kim, Eugene D.;Park, Young-Wan;Kang, Myung-Seok;Kim, Ee-Eul;Yang, Ho-Soon
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.4
    • /
    • pp.391-396
    • /
    • 2004
  • Spaceborne earth observation or astronomical payloads often use Cassegrain-type telescopes due to the limits in mass and volume. Precision optical alignment of such a telescope is vital to the success of the mission. This paper describes the simulated optical alignment methods using interferograms, wavefront error, and reverse-optimization method for different levels of alignment accuracy. It concludes with the alignment experiment results of a Cassegrain type spaceborne camera with 300mm entrance pupil diameter.

TELEMETRY AND TELECOMMAND SYSTEM OF LOW-EARTH-ORBIT MICROSATELLITE, KITSAT-1 AND 2 (저궤도 소형위성 우리별 1, 2호의 원격검침 및 명령부)

  • 김성헌;성단근;김형명;최순달;네빌빈
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.30-40
    • /
    • 1996
  • The telecommand system of KITSAT micorsatellite receives commands from ground stations or on-board computers. It decodes, validates and delivers commands to sub-system. The telemetry system is to collect, process and format satellite housekeeping and mission data for use by on-board computer and ground station. It is crucial for the telemetry and telecommand system to have high reliability since the spacecraft operation is mostly based on the function of this system. The telemetry and telecommand(TTC) systems for KITSAT-1 and 2 had been developed under the consideratin of the space environment of Low-Earth-Orbit and the limited mass, volume and power of micorsatellite. Since both satellites were launched in August 1992 and September 1993 respectively, the have shown to be working successfully as well as the TTC systems on-board both satellites.

  • PDF

Strong Correlation Effect by the Rare Earth Substitution on Thermoelectric Material Bi2Te3 ; in GGA+U Approach

  • Quang, Tran Van;Kim, Miyoung
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.05a
    • /
    • pp.19-20
    • /
    • 2013
  • Thermoelectic properties of the typical thermoelectric host materials, the tellurides and selenides, are known to be noticeably changed by their volume change due to the strain [1]. In the bismuth telluride ($Bi_2Te_3$) crystal, a substitution of rare-earth element by replacing one of the Bi atoms may cause the change of the lattice parameters while remaining the rhombohedral structure of the host material. Using the first-principles approach by the precise full potential linearized augmented plane wave (FLAPW) method [2], we investigated the Ce substitution effect on the thermoelectric transport coefficients for the bismuth telluride, employing Boltzmann's equation in a constant relaxation-time approach fed with the FLAPW wave-functions within the rigid band approximation. Depending on the real process of re-arrangement of atoms in the cell to reach the equilibrium state, $CeBiTe_3$ was found to manifest a metal or a narrow bandgap semiconductor. This feature along with the strong correlation effect originated by the 4f states of Ce affect significantly on the thermoelectric properties. We showed that the position of the strongly localized f-states in energy scale (Fig. 1, f-states are shaded) was found to alter critically the transport properties in this material suggesting an opportunity to improve the thermoelectric efficiency by tuning the external strain which may changing the location of the f-sates.

  • PDF

Influence to give to a performance evaluation and sunlight reflection properties of the building crustal material (건물외피 재료의 성능평가와 일사반사 특성에 미치는 영향)

  • Sang, Hie-Sun;Kwak, Sung-Gun;Lee, Jeung-Seok;Yoshida, Atsumada
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.177-186
    • /
    • 2011
  • We can expect reduction of the sunlight absorption quantity to a structure and an earth surface, a decline of the surface temperature and a decline of the heat transport volume in what there is a method I give the sunlight reflectance in the aspect to the surface of the building by painting sunlight high reflectance paint, and to reduce the sunlight absorption quantity to a structure and an earth surface and does so, and, in addition, a method high water retentivity of tree planting and the road surface of the city space uses evaporation latent heat of the water by making it, and to restrain a rise in temperature is thought about. and It is thought that I reduce the sunlight absorption quantity to not only the structure but also other structures and attention gathers to the reflexive reflector reflecting in the direction again and it is wide as a marker of a board and the clothing of the traffic sign and is used the incidence energy from a source of light for this reflexive reflector now by there is it and devises surface structure again, and controlling reflection directivity for the sunlight for the purpose of raising night visibility.

  • PDF

CME mean density and its change from the corona to the Earth

  • Na, Hyeonock;Moon, Yong-Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.50.2-50.2
    • /
    • 2019
  • Understanding three-dimensional structure and parameters (e.g., radial velocity, angular width, source location and density) of coronal mass ejections (CMEs) is essential for space weather forecast. In this study, we determine CME mean density in solar corona and near the Earth. We select 38 halo CMEs, which have the corresponding interplanetary CMEs (ICMEs), by SOHO/LASCO from 2000 to 2014. To estimate a CME volume, we assume that a CME structure is a full ice-cream cone which is a symmetrical circular cone combined with a hemisphere. We derive CME mean density as a function of radial height, which are approximately fitted to power-law functions. The average of power-law indexes is about 2.1 in the LASCO C3 field of view. We also obtain power-law functions for both CME mean density at 21 solar radii and ICME mean density at 1AU, with the average power-law index of 2.6. We estimate a ratio of CME density to background density based on the Leblanc et al.(1998) at 21 solar radii. Interestingly, the average of the ratios is 4.0, which is the same as a default value used in the WSA-ENLIL model.

  • PDF

Multifractal Classification of the Disturbed Areas of the Sidi Chennane Phosphate Deposit, Morocco

  • Ayad, Abderrahim;Bakkali, Saad
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.231-239
    • /
    • 2022
  • The irregular shape of the disturbances is a fundamental issue for mining engineers at the Sidi Chennane phosphate deposit in Morocco. A precise classification of disturbed areas is therefore necessary to understand their part in the overall volume of phosphate. In this paper, we investigate the theoretical and practical aspects of studying and measuring multifractal spectrums as a defining and representative parameter for distinguishing between the phosphate deposit of a low rate of disturbances and the deposit of a high rate. An empirical multifractal approach was used by analyzing the disturbed areas through the geoelectric images of an area located in the Sidi Chennane phosphate deposit. The Generalized fractal dimension, D(q), the Singularities of strength, α(q), the local dimension, f(α) and their conjugate parameter the mass exponent, τ(q) as well as f(α)-α spectrum were the common multifractal parameters used. The results reported show wide variations of the analyzed images, indicating that the multifractal analysis is an indicator for evaluate and characterize the disturbed areas within the phosphates deposits through the studied geoelectric images. This could be the starting point for future work aimed at improving phosphate exploration planning.