• Title/Summary/Keyword: Earth tube system

Search Result 39, Processing Time 0.021 seconds

Evaluation on the Performance of Design Parameters in Earth Tube System (지중튜브시스템 주요 설계 변수의 성능 평가)

  • Hwang, Yong-Ho;Hwang, Seok-Ho;Choi, Jeong-Min
    • Journal of the Korean Solar Energy Society
    • /
    • v.36 no.3
    • /
    • pp.87-94
    • /
    • 2016
  • Earth tube system can be installed in many ways. However, performance data on earth tube system is still insufficient. Therefore, in this study seven design parameters of earth tube systems were chosen such as underground earth tube length, depth, tube thermal conductivity, thickness, radius, soil conditions, and fan type. And the change effects in the values of the seven parameters on earth tube exit temperatures and heat transfer rate were examined through Energyplus simulations.

Performance Analysis on Combined Horizontal Ground Source Heat Pump with Earth tube using EnergyPlus (EnergyPlus를 이용한 수평형의 지열 히트펌프와 어스튜브를 조합한 시스템의 성능 검토)

  • Cho, Sung-Woo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.13 no.2
    • /
    • pp.22-29
    • /
    • 2017
  • This study is performed to performance of the combined system the GSHP (Ground Source Heat Pump) system with the Earth tube system using EnergyPlus program. The Earth tube system using fan is characteristics as supply lower (higher) air temperature than outdoor air temperature in cooling and heating seasons, the GSHP system is characteristics as small indoor air temperature variation range. As the results of Earth tube + GSHP system simulation, GSHP power can be reduced than the GSHP single operation as 17.3% in cooling seasons and 32.5% in heating seasons, the GSHP design capacity can be replaced more small size.

Analysis of the thermal performances of air-earth direct heat exchanger (공기 지중간 직접열교환시스템의 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.2
    • /
    • pp.112-121
    • /
    • 1997
  • This study is focused on the development and selection of optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air. Finite volume method was adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

Analysis on the thermal performances of air-earth direct heat exchanger in one year (공기 지중간 직접열교환시스템의 연중 열성능 해석)

  • Kim, W.K.;An, J.S.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.4
    • /
    • pp.517-526
    • /
    • 1997
  • This study is focused on the development and selection of the optimal cool tube system to maximize its thermal performance. Cool tube is devised to reduce the heating and cooling load of building by preheating or refreshing of intake air with buried pipes. Finite volume method is adopted to solve the conduction problem between the cool tube and earth. We examine the cool tube system for two operating periods, a short term(12 hours) and a long term(3 months). The results of short term operations reveal that condensation significantly influences and raises the exit air temperature. For long term operations, optimum conditions of cool tube system are obtained with variations of flow-rate, depth, length and diameter of cool tube.

  • PDF

Study on Fresh Air Load Reduction System by Using Geothermal Energy - Reducing Effect of a Fresh Air Load by Combining with Air-heated Solar Collector - (지열을 이용한 공조외기부하저감 시스템에 관한 연구 - 공기식 집열기와의 병용에 의한 공조외기부하저감 효과 -)

  • Son Won-Tug;Lee Sung
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1218-1226
    • /
    • 2004
  • This paper presents thermal behaviors and performances of a fresh air load reduction system by using earth tube system combined with air-heated solar collector. The earth tube system reduces a fresh air load by heat exchange with soil throughout the year. In the previous experimental research, it was clarified that the earth tube system was very useful as a fresh air load reduction system. However, since outlet temperature of the fresh air which was heated by earth tube system was below 15$^{\circ}C$ in winter, it is not suitable to introduce the fresh air into the place of residence directly. Therefore, a simulation model using the simple heat diffusion equation was used to examine a rising effect of outlet air temperature in winter by combining with air-heated solar collector. An improvement of annual performance by control of operation is also quantitatively examined. In conclusion, it is confirmed that its performance is improved by control of operation throughout the year and outlet air temperature rose by combining with air-heated solar collector.

Effects of Earth-Tube Characteristics on the Soil-Air Heat Exchanger Performances (지중매설관의 특성이 토양 - 공기 열교환기 성능에 미치는 영향)

  • 김영복
    • Journal of Biosystems Engineering
    • /
    • v.22 no.4
    • /
    • pp.459-468
    • /
    • 1997
  • To optimize the design and operation of a soil- air heat exchanger system, the effects of variables characterizing system design and operation on the performance of the system were analyzed by a theoretical model which included the three-dimensional transient heat conduction equation. The solution of the theoretical model was acquired by a computer program that uses Finite Difference Methods and Gauss-Seidel iteration computation, in which the time discretization scheme was an implicit difference appoximation. The computer program was validated first by comparison of the results for different grid sizes. Air outlet temperature, energy gain, and heat exchange efficiency of the system were analyzed based upon the tube diameter, tube length, tube thickness, and tube thermal diffusivity.

  • PDF

Effect of Air-earth Heat Exchange System on Growth of Leafy Lettuce in Greenhouse (온실내 잉여에너지 이용을 위한 지중 열교환 시스템의 상추 재배 효과)

  • Paek, Yee;Jeon, Jong-gil;Yun, Nam-kyu;Kang, Geum-Choon;Lee, Si-Young
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.71-76
    • /
    • 2011
  • Earth to air heat exchangers made by iron, aluminium, copper and poly-ethylene pipe for single greenhouse heating were experimented and blowers. Earth to air heat exchanger was installed by pipelines in earth tube at 70cm depths and air blower was the heating capacity 3kW/h, As the result, Temperature difference due to temperature history of the inlet and outlet air on the various type in earth tube in greenhouse showed that air temperature at the various type in earth tube, comparison tube were make no difference respectively. Under the experimental condition, heat fluxes and heating load were showed 6,800Kcal/h, 19,699kcal/h generally yield of Lactuca Sativa cultured during days of sowing 90day in greenhouse using copper pipe was 170% incleased.

Performance Analysis of an Earth Tube Heat Exchanger(I) -Temperature Variation Characteristics and Heat Exchange Performance on the Mode of Continuous Operation (지중매설관 열교환장치의 성능분석(I) -연속운전실험에서의 온도특성 및 열교환성능-)

  • Kim, Y.B.;Paek, Y.
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.436-448
    • /
    • 1996
  • An earth tube soil air heat exchange system was designed, installed and operated as a single pass heat exchanger to utilize the geothermal energy as an natural energy source. This study was undertaken to investigate the potential of the heating and cooling, energy gain, heat exchange efficiency and coefficient of performance of the system. The system consisted of 30m in length and 30cm in diameter polyethylene pipes buried 2m deep in soil. Maximum heating and cooling performance were 2.51㎾ and 1.26㎾ at the air mass rate of 21cmm. Energy gain and coefficient of performance were the function of temperature difference between outside air and soil temperature. They were expressed as Q=0.33$ imes$$Delta T_{max}$+0.134(㎾) for energy gain and COP=0.44$ imes$$Delta T_{max}$+0.178 for coefficient of performance with correlation factor of 0.95. The mean of heat exchange efficiencies was 85.6%.

  • PDF

A BAFFLE DESIGN FOR AN AIRGLOW PHOTOMETER ON BOARD THE KOREA SOUNDING ROCKET-III

  • LEE YOUNG SUN;KIM YONG HA;YI YU;KIM JHOON
    • Journal of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.165-172
    • /
    • 2000
  • A baffle system for an airglow photometer, which will be on board the Korea Sounding Rocket-III(KSR-III), has been designed to suppress strong solar scattered lights from the atmosphere below the earth limb. Basic principles for designing a baffle system, such as determination of baffle dimensions, arrangement of vanes inside a baffle tube, and coating of surfaces, have been reviewed from the literature. By considering the constraints of the payload size of the KSR-III and the incident angle of solar light scattered from the earth limb, we first determined dimensions of a two-stage baffle tube for the airglow photometer. We then calculated positions and heights of vanes to prohibit diffusely reflected lights inside the baffle tube from entering into the photometer. In order to evaluate performance of the designed baffle system, we have developed a ray tracing program using a Monte Carlo method. The program computed attenuation factors of the baffle system on the order of $10^{-6}$ for angles larger than $10^{\circ}$, which satisfies the requirements of the KSR-III airglow experiment. We have also measured the attenuation factors for an engineering model of the baffle system with a simple collimating beam apparatus, and confirmed the attenuation factors up to about $10^{-4}$. Limitation of the apparatus does not allow to make more accurate measurements of the attenuation factors.

  • PDF