• Title/Summary/Keyword: Earth pressures

Search Result 217, Processing Time 0.027 seconds

Stability of the Innovative Prestressed wale System Applied in Urban Excavation (도심지 굴착에 적용된 IPS 띠장의 안정성)

  • Kim, Nak-Kyung;Park, Jong-Sik;Jang, Ho-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.225-235
    • /
    • 2005
  • The stability of innovative prestressed wale system applied in urban excavation was investigated. The IPS is a wale system prestressed by tension of steel wires. The IPS consists of steel wires, H-beam support and wale. The IPS provides a high flexural stiffness to resist the bending moment caused by earth pressures. And the IPS transmits earth pressures due to excavation to corner struts. The IPS provides a larger spacing of support, economical benefit, construction easiness, good performance and safety control. This paper explains basic concept and mechanism of the IPS and presents the measured performances of the IPS applied in urban excavation. In order to investigate applicability and stability of the IPS in urban excavation, observations and measurements in site were performed. The IPS applied in urban excavation was performed successfully. The results of the field instrumentation were presented. The measured performances of the IPS were investigated. And behavior of the wall and corner struts was investigated.

Physical test study on double-row long-short composite anti-sliding piles

  • Shen, Yongjiang;Wu, Zhijun;Xiang, Zhengliang;Yang, Ming
    • Geomechanics and Engineering
    • /
    • v.13 no.4
    • /
    • pp.621-640
    • /
    • 2017
  • The double-row long-short composite anti-sliding piles system is an effective way to control the landslides with high thrust. In this study, The double-row long-short composite anti-sliding piles with different load segment length (cantilever length) and different pile row spacing were studied by a series of physical tests, by which the influences of load segment length of rear-row piles as well as pile row spacing on the mechanical response of double-row long-short composite anti-sliding pile system were investigated. Based on the earth pressures in front of and behind the piles obtained during tests, then the maximum bending moments of the fore-row and the rear-row piles were calculated. By ensuring a equal maximum moments in the fore-row and the rear-row piles, the optimum lengths of the rear-row piles of double-row long-short composite system under different piles spacing were proposed. To investigate the validity of the reduced scale tests, the full-scale numerical models of the landside were finally conducted. By the comparisons between the numerical and the physical test results, it could be seen that the reduced scale tests conducted in this study are reliable. The results showed that the double-row long-short composite anti-sliding piles system is effective in the distribution of the landslide thrust to the rear-row and the fore-row piles.

A Study on Developed Earth Pressures behind Retaining Walls Built Close to Rock Faces (암 근처에 설치되는 옹벽의 발생토압에 관한 연구)

  • 김홍택
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.7-18
    • /
    • 1990
  • To deal with the case of a rigid retaining wall built close to a stable rock face with cohesionless backfill, analytical solution methods Proposed by Spangler- Handy and Sokolovskii are modified. The modified solution methods, taking into account different friction angles along the wall and the rock face, can estimate the developed static or dynamic horizontal earth pressures behind vertical retaining walls experiencing various types of outward wall movements. The range of application of each proposed method, which is represented by the ratio of the distance between the wall and the rock face to the height of the wall, is compared with each other and also is examined for different wall friction angles as well as soil friction angles. Further, the result predicted by the modified Spangler - Handy solution method is compared with that from the experimental model test on sand. The comparison shows in general good agreements at various stages of retaining wall rotation about its toe. Finally results of analytical parametric study, together with the design charts, are presented to demonstrate the effects of wall friction angles and horizontal acceleration coefficients.

  • PDF

The Stability of Foundation Piles for Abutment (교대기호말뚝의 안정)

  • 홍원표;안종필
    • Geotechnical Engineering
    • /
    • v.7 no.2
    • /
    • pp.67-82
    • /
    • 1991
  • When bridge abutments are constructed on pile foundations in unstable slope, horizontal deflections may be developed in the piles and the abutments due to lateral soil movements arisen from backfills. In most of the above mentioned cases, the piles are situated in a soft layer where lateral earth pressures are developed between the piles and the soils. The undesirable lateral earth pressures decreases the stability of the piles. However, the piles may have a preventive effect against lateral soil movements and improve the stability of the slope. For the stability problem of such slope containing piles in a row, two kinds of analyses for the slope-stability and the pile-stability have to be performed. The whole stability of bridge abutments on pile foundation can be obtained only by the stabilization for both the slope and the piles. A reasonable analytical method for the bridge abutments on pile foundation was established in this study By use of the analytical method for an example, several factors which influence affect the stability of bridge abutment were investigated. Finally, for the bridge abutment subjected to lateral deflections damage, the fixity condition of pile head was investigated.

  • PDF

A study on eccentric load acted on cut and cover tunnel by numerical approach (복개 터널구조물에 작용하는 편토압 고려를 위한 수치해석적 연구)

  • Bae, Gyu-Jin;Chung, Hyung-Sik;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.3
    • /
    • pp.227-239
    • /
    • 2003
  • For environment-friendly construction, cut-and-cover tunnels have been constructed, thereby leading to embankment slopes with a number of steps. The slopes cause eccentric load on concrete lining of the tunnel. Nevertheless, uniform vertical and horizontal earth pressures, which are determined by considering a self-weight of embankment and $K_0$, are routinely used in structural calculation. Distribution of the earth pressures applied to the lining will lead to a biased calculation far from the actual behavior of the lining. In this study, basic study, therefore, was performed to consider the eccentric load properly in design and analysis of a cut-and-cover tunnel. A method capable of considering the eccentric load in design was proposed and its applicability was numerically examined through a number of examples.

  • PDF

Host Vector Systems of Deep-sea Piezophilic Bacteria, and the Constructions of High Pressure Glow Cells

  • Sato, Takako;Kato, Chiaki
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.83-85
    • /
    • 2007
  • Deep-sea bacteria are adapted to extreme environments, such as high pressures and cold temperatures. We have isolated many piezophiles which grow well even under high pressures from deep-sea sediment. Shewanella violacea DSS12 and Moritella japonica DSK1 have the ability to grow at up to 70 MPa, and those bacteria have unique mechanisms of gene expression in response to high pressure conditions. The combination of gene expression systems in piezophiles, like the high pressure-dependent promoters and GFP reporter gene, may reveal highly fluorescent cells when exposed to high hydrostatic pressure conditions. It is predicted that a novel bio-sensing system can be made to probe high pressure environments using living bacteria. First, gene transformation into our piezophiles, strains DSS12 and DSK1, were examined. Eschericha coli S17-1 was used for bacterial conjugation with those piezophiles. As a result, the broad host range vector, pKT231, and the shuttle vector, pTH10, were successfully introduced to DSS12 and DSK1, respectively. Next, The pressure regulated promoters from DSS12 and DSK1 were cloned into proper vectors and combined with GFP as a reporter gene downstream of each promoter. The transformants of DSK1 and DSS12 with the recombinant pTH10 and pKT231 plasmid, which has cadA and glnA promoters (each of them is a pressure regulated promoter from DSK1 and DSS12, respectively) and GFP, were grown under high pressure and gene expression of GFP promoted by 50 MPa pressure was confirmed. This is a critical point to create a pressure-sensing bacteria, as the "High Pressure Glow Cells", which will indicate the level of environmental pressure using fluorescence of GFP as a reporter gene.

  • PDF

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

An Experimental Study on the Earth Pressure on the Underground Box Structure (지하 박스구조물에 작용하는 토압에 관한 실험적 연구)

  • 김은섭;이상덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.4
    • /
    • pp.235-246
    • /
    • 1999
  • Some of the underground structures such as subway tunnels are constructed by open cut method, in which the ground is excavated, a structure installed, and after that the excavated space is backfilled. In this case, because of their narrow and constrained boundary conditions, the earth pressure induced by self-weight of the backfilled soil acting on the underground structures is different from that of the classical theory. The vertical and horizontal earth pressures acting on upper slab and side wall of the underground structures constructed by open cut method are affected by the backfill geometry. The laboratory model tests were performed in the conditions of a variety of the shapes of backfill geometry and wall friction. And their results were compared with those from theories. As a result, it was observed that the distribution of the earth pressure acting on the underground structure is affected by the shapes of backfill geometry, the width of backfill, the angle of excavation and the wall friction.

  • PDF

Applicability of CGS for Remediation and Reinforcement of Damaged Earth Dam Core (손상된 흙댐 코어의 보수.보강을 위한 CGS 공법의 적용성)

  • 천병식;최중근
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.325-334
    • /
    • 2003
  • It is very difficult to rehabilitate the damaged earth dam core to manage it stably against development of flow path and increase of leakage by hydraulic fracture. In this study, application of CGS (Compaction Grouting System) to damaged earth dam core was noticed by analyzing and comparing the results of the in-situ data and FEM. Results of in-situ data showed that according as progress of rehabilitation works tip pressures increased and volume of injection decreased, voids of damaged dam core were filled with materials similar to origin dam core. Rehabilitations caused turbidity and volume of leakage to decrease at the same water level. Also, results of FEM analysis indicated that permeability decreased by rehabilitation. Through this study, it is proved that CGS is able to decrease permeability coefficient, volume of leakage and turbidity on damaged earth dam core.

Earth pressure of vertical shaft considering arching effect in layered soils (다층지반에서의 아칭현상에 의한 수직갱 토압)

  • Lee, In-Mo;Moon, Hong-Pyo;Lee, Dea-Su;Kim, Kyung-Ryeol;Cho, Man-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.49-62
    • /
    • 2007
  • A new earth pressure equation acting on the vertical shafts in cohesionless soils has been proposed by modifying the equations proposed by others. In order to verify the modified equation, model tests which can control uniform wall displacement with depth to radial direction were conducted. Model tests were performed with three different wall friction angles and two different relative densities. The measured values were larger than estimated values when assuming $\lambda=1$ ; smaller than those when assuming $\lambda=1-sin\phi$. The parameter, $\lambda$ is the ratio of tangential stress to vertical stress and is the most critical value in proposed equation. A method which can estimate the earth pressure on vertical shafts in layered soils is also proposed by reasonably assuming the failure surface of layered soils and using the modified equation. In order to verify the proposed method, in-situ measurement data have been collected from the three in-situ vertical shafts installed in layered soils. Most of earth pressures converted from measured data match reasonably well with estimated values using proposed method.

  • PDF