• 제목/요약/키워드: Earth Retaining Structure

검색결과 128건 처리시간 0.029초

다단식 보강토 옹벽 설계사례에 관한 고찰 (A Case Study on Design of Geosynthetic-Reinforced Segmental Retaining Walls)

  • 박시삼;조삼덕;박두희;장기수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 추계 학술발표회
    • /
    • pp.168-175
    • /
    • 2008
  • The method of reinforced earth walls has grown remarkably and the frequency of utilization has been increased on a national scale thereafter introduced in the middle 1980s in Korea. Furthermore the construction case of the extensive Geosynthetic-Reinforced Segmental Retaining Walls had been increased. Currently, the design criterion of FHWA and NCMA mainly used in Korea suggest determining the horizontal distance of the upper/lower retaining wall based on the study results of the internal stability and the external stability of Segmental Retaining Walls but in many cases are not suitable for the actual situation in Korea. Therefore, in this study reviewed the design criterion of Geosynthetic-Reinforced Segmental Retaining Walls, performed the internal and external stability in Paju, Gyeonggi-do based on the design criterion of FHWA and NCMA, suggested the modified design criterion of FHWA with analyzing the results, and performed the stability analysis for the internal and external stability and the compound failure. Moreover for the confirmation of the modified FHWA design standard, the suggestion and the analysis of the numerical analysis approaching method using shear strength reduction technique were performed and the design cases utilized the modified FHWA design standard based on the study analysis were introduced.

  • PDF

모형실험에 의한 조립식 격자 옹벽의 거동 특성 (The Behavior Characteristics of Segmental Crib Retaining Wall by Model Test)

  • 김상수;신방웅;김용언;이재영;변동건
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1999년도 가을 학술발표회 논문집
    • /
    • pp.449-456
    • /
    • 1999
  • The concrete wall is the most useful of retaining structure which can obtain the engineering stability, but has problems that is not friendly with nature environment in a fine view, such as poor rear drainage, and shrinkage crack by temperature difference, etc. Because of this problems, the research for a segmental crib retaining wall has been performed. A segmental crib retaining wall is quickly and easily erected because is possible to be erected as the individual members, and is not sensitive to differential settlement and earthquakes. Also, it shows effective drainage and has a friendly advantage with nature environment because of being able to be planted with vines and shrubs in retaining walls The design of crib retaining walls has traditionally been based on classical soil mechanics theories. These theories, originally derived by Rankine(1857) and Coulomb(1776), assume that the wall acts as a rigid body. This assumption results in failure being predicted by either monolithic overturning or base sliding mechanisms. However, the wall consists of individual members which have been created a three dimensional grid. This grid confines an fill mass which becomes part of the wall. The filled wall resists the earth pressure with the same mechanism of classical gravity walls. Because of the flexibility of the individual segment, it allows relative movement between the individual members within the wall. The three dimensional flexible grid leads to stress redistribution when the wall is subjected to external or fill loads. Due to the flexibility and the stress redistribution, the failure of segmental crib wall consists of not only overturing and base sliding but the local deformation and the failure between the segmental members. It has been researched in the field that due to this flexibility and load redistribution, serviceability failure of segmental crib walls is unlikely to be due to overturning or base sliding. Therefore, in this study, the relative displacement appearance of retaining wall due to variation of inclination is measured to examine this behavior characteristics. Also, the behavior characteristics of retaining walls by surcharge load, and location of acting point of retaining wall rear, and the displacement characteristics and deflections are estimated about the existence and nonexistence of Rear Stretcher performing an role in transmitting earth pressure of Header and Stretcher organizing retaining walls. This research focuses on the characteristics due to the behavior of retaining walls. This research focuses on the characteristics due to the behavior of retaining walls.

  • PDF

전면부 변형형태에 따른 보강토 벽체 구조물의 파괴거동에 관한 연구 (A Study on the Failure Behavior of the Reinforced Earth Wall Structures according to the Deformed Types of the Face)

  • 김준석;이상덕
    • 한국지반공학회논문집
    • /
    • 제15권4호
    • /
    • pp.167-173
    • /
    • 1999
  • 본 논문에서는 전면부 변형형태에 따른 보강토옹벽의 파괴거동을 탄소봉 모형 실험장치를 이용하여 실험적으로 연구하였다. 실험에서는 모형 보강토 벽체의 전면판 변형 형태를 상부변형, 수평변형, 하부변형 등 3종류로 나누어 실시하였다. 변형된 벽체의 파괴선을 육안으로 확인하기 위하여 사진촬영 기법을 이용하였다. 실험결과 상부변형의 조건일 경우 파괴선은 포물선의 형태를,수평이동의 조건일 경우 파괴선은 매우 큰 원호의 형태를 보였으며, 하부변형의 조건일 경우 파괴선은 직선화된 대수나선형태를 보였다. 현재 설계에 많이 사용되고 있는 복합중력식 설계법의 가상파괴선은 하부변형 조건의 파괴선과 가장 유사한 형태를 보였다.

  • PDF

분리형 보강토공법의 고속도로 적용사례 (A Case Study on the Discrete Segmental Retaining Wall in Highway Construction)

  • 노한성;최영철
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.337-344
    • /
    • 2001
  • The application of mechanically stabilized earth wall(MSEW) with segmental front panel has been increasing in highway construction due to its cost-effectiveness. However, some failures during construction have been reported and many field engineers are reluctant to select this method for important structure. One of the main reasons may be that there is no moderate specification for design and construction of MSEW yet. This paper discussed the main results of analysis on a case of block-type segmental retaining wall in highway construction. Based on the results, some recommendations on design and construction method of MSEW are presented.

  • PDF

강봉으로 보강된 프리캐스트 프리스트레스 옹벽의 동적 안정성 평가 (Evaluation of Dynamic Stability for Precast and Prestressed Wall reinforced by Steel Pipe)

  • 이일화;이수형;최찬용;금창준
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.381-386
    • /
    • 2006
  • The advantages of precast production are fast construction, reduction of labor and insurance of good quality. In recently, the application of the precast production is increased in the earth retaining wall field. This paper presents the results of the numerical modelling that was carried out to evaluate the stability of precast and prestressed earth retaining wall under dynamic train loading. The two-dimensional explicit dynamic finite element method (ABAQUS) was used to carry out the numerical analyses. The train loading to act track is calculated by using the real measured phase angle data. Mainly, the displacement and acceleration of wall structure in time domain analyzed to evaluate the stability under the dynamic train load.

  • PDF

신장성 지오그리드 보강재의 인발저항특성 평가를 위한 시험 및 수치해석 기법 (Testing and Numerical Analysis Techniques for Pull-out Resistance Characteristics of the Extensible Geogrid)

  • 이성혁;고태훈;이진욱;황선근
    • 한국철도학회논문집
    • /
    • 제5권2호
    • /
    • pp.93-103
    • /
    • 2002
  • Reinforced earth structure has been regarded as general structure in order to achieve efficient land utilization as well as securing safety in railway service lines in other countries, but there are no construction actual results in Korea. In this study, the soil-geogrid interaction mechanism was investigated experimentally and numerical analysis was performed to predict Pull-out behaviour of geogrid embedded in reinforced earth body. This experimental data and analysis result can not contribute to understand the soil-geogrid interaction mechanism at soil-geogrid interface but also be used in design practice of the railway reinforced earth structures.

지주식흙막이의 두부 연결 방법에 따른 안정성에 관한 실험적 연구 (An Experimental Study on the Stability of IER according to the Head Connection Method)

  • 유재원;임종철;서민수;김창영
    • 한국지반공학회논문집
    • /
    • 제32권12호
    • /
    • pp.45-57
    • /
    • 2016
  • IER은 굴착 중에 안정성을 증가시키기 위해서 전면지주에 배면지주를 기울어지게 설치하고 강결시킨 구조이다. IER은 배면지주가 억지말뚝의 역할을 함으로써 전면지주에 발생하는 수평변위를 억제하는 효과가 있고, 전면지주에 작용하는 토압을 분산 시켜 구조적으로 안정한 가시설 공법이다. 본 연구에서는 사질토 지반에서 수치해석과 실내모형실험을 통해 IER의 두부를 강결과 힌지로 조건을 다르게 연결하여 IER의 역학적 특성을 확인하였다. 수치해석 결과, 최대수평변위는 두부의 연결 방법이 강결일 때 힌지일 때의 88%가 발생하고 실내모형실험 결과, 수평변위는 두부 연결 방법이 강결일 때 힌지일 때의 단지 7%만 발생하는 것으로 분석되었다. 또한, 지반의 전단변형 해석 결과 토압은 두부의 연결 방법이 강결일 때 힌지일 때의 67%만 작용하는 것으로 분석되었다.

PHC 파일을 이용한 영구벽체 융합 공법 (Permanent Basement Wall Convergence Method Using a PHC Pile)

  • 류수현
    • 한국융합학회논문지
    • /
    • 제6권6호
    • /
    • pp.163-169
    • /
    • 2015
  • 본 연구는 기존의 가설 흙막이 벽으로만 사용되는 현장제조 CIP를 기성제 PHC 파일로 대체하여 흙막이 겸 영구벽체로 사용하는 융합 공법을 제안하고 적용가능성을 확인하였다. PHC파일은 공장제작으로 품질을 믿을 수 있으며 재료적으로 콘크리트 강도나 긴장재의 인장응력이 CIP에 비해 우수하고 구조적으로도 큰 휨내력을 가지고 있다. 이러한 장점을 기진 PHC파일을 이용한 영구벽체 공법은 기존의 가설 흙막이 공법과 비교하면 시공이 간편하고 경제적이며 현장타설이 최소화되어 공기단축이 가능하다. 또한 공장제작을 통해 균질한 구조성능을 얻을 수 있고 흙막이와 지하외벽이 이중 시공되지 않으므로 공간활용 측면에서도 유리한 장점이 있는 것으로 나타났다.

Nonlinear Seismic Analysis of U-Shaped Cantilever Retaining Structures

  • Sadiq, Shamsher;Park, Duhee;Yoo, Jinkwon;Yoon, Jinam;Kim, Juhyung
    • 한국지반환경공학회 논문집
    • /
    • 제18권11호
    • /
    • pp.27-33
    • /
    • 2017
  • Nonlinear dynamic analysis is performed to calculate the response of U-shaped cantilever retaining structure under seismic loading using the finite element (FE) analysis program OpenSees. A particular interest of the study is to evaluate whether the moment demand in the cantilever can be accurately predicted, because it is an important component in the seismic design. The numerical model is validated against a centrifuge test that was performed on cantilever walls with dry medium dense sand in backfill. Seismic analysis is performed using the pressure-dependent, multi-yield-surface, plasticity based soil constitutive model implemented in OpenSees. Normal springs are used to simulate the soil-structure interface. Comparison with centrifuge show that FE analysis provides good estimates of both the acceleration response and bending moment. The lateral earth pressure near the bottom of the wall is overestimated in the numerical model, but this does not contribute to a higher prediction of the moment.

사진촬영을 통한 보강토옹벽의 파괴조건 연구 (Critical Failure Condition of Reinforced Earth Wall by Photograph)

  • 주재우;김성태;김재영;장용채;조삼덕
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2004년도 춘계학술발표회
    • /
    • pp.380-387
    • /
    • 2004
  • Recently the geosynthetics reinforced retaining wall has been widely used instead of the steel reinforced retaining wall. The geosynthetics reinforced retaining wall is a very dangerous structure if the geosynthetics lose their strength about tension or if it lose their pullout resistence, but it was known that the geosynthetics reinforced wall had a great resistence and was a very safe structure against a earthquake or a dynamic load. It can be said that most important factors in the stability of the geosynthetics reinforced wall are the horizontal length of reinforcement and the vertical distance between two reinforcements. That is to say, as the length of reinforcement is longer, the structure is more stable and as the vertical distance between two reinforcements is shorter, it is more stable. In this study, in order to get the critical condition with a safety rate of 1, various kinds of model tests about geosynthetics reinforced wall has been performed. Photos by B-shutter method has been taken during tests and from photos, which show us the failure state, the critical condition about failure has been conformed. Accordingly the equation, which says the limit of stability in geosynthetics reinforced wall., has been proposed.

  • PDF