• Title/Summary/Keyword: Earth's field

Search Result 634, Processing Time 0.028 seconds

A Magnetic Field Separation Technique for a Scaled Model Ship through an Earth's Magnetic Field Simulator

  • Chung, Hyun-Ju;Yang, Chang-Seob;Jung, Woo-Jin
    • Journal of Magnetics
    • /
    • v.20 no.1
    • /
    • pp.62-68
    • /
    • 2015
  • This paper presents an experimental technique to accurately separate a permanent magnetic field and an induced one from the total magnetic fields generated by a steel ship, through compensating for the Earth's magnetic field. To achieve this, an Earth's magnetic field simulator was constructed at a non-magnetic laboratory, and the field separation technique was developed, which consisted of five stages. The proposed method was tested with a scaled model ship, and its permanent and induced magnetic fields were successfully extracted from the magnetic field created by the ship. Finally, based on the separated permanent magnetic field data, the permanent magnetization distribution on the hull was predicted by solving an inverse problem. Accordingly, the permanent magnetic fields generated by the ship can easily be calculated at any depth of water.

Improvement of Earth Gravity Field Maps after Pre-processing Upgrade of the GRACE Satellite's Star Trackers

  • Ko, Ung-Dai;Wang, Furun;Eanes, Richard J.
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.353-360
    • /
    • 2015
  • Earth's gravity field recovery was improved after the pre-processing upgrade of the Gravity Recovery And Climate Experiments (GRACE) satellite's star trackers. The star tracker measurements were filtered with a tighter low-pass filtering of 0.025Hz cutoff frequency, instead of a nominal filtering of 0.1Hz cutoff frequency. In addition, a jump removal algorithm was applied to remove discontinuities, due to direct Sun and/or Moon interventions, in the star tracker measurements. During the K-Band Ranging (KBR) calibration maneuvers, large attitude variations could be detected concurrently by both of the star trackers and the accelerometer. The misalignment angles of star trackers between the true frame and the normal frame could be determined by comparing measurements from these sensors. In this paper, new Earth' gravity field maps were obtained using above improvement. Based on comparisons to nominal Earth's gravity field maps, the new Earth's gravity field maps were found better than the nominal ones. Among the applied methods, the misalignment calibration of the star trackers had a major impact on the improvement of the new Earth's gravity field maps.

Observation of the Earth's Magnetic field from KOMPSAT-1

  • Hwang, Jong-Sun;Kim, Sung-Yong;Lee, Seon-Ho;Min, Kyung-Duck;Kim, Jeong-Woo;Lee, Su-Jin
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1236-1238
    • /
    • 2003
  • The Earth's total magnetic field was extracted from on board TAM (Three Axis Magnetometer) observations of KOMPSAT-1 satellite between June 19th and 21st, 2000. In the pre-processing, the TAM's telemetry data were transformed from ECI (Earth Centered Inertial frame) to ECEF (Earth Centered Earth Fixed frame) and then to spherical coordination, and self-induced magnetic field by satellite bus itself were removed by using an on-orbit magnetometer data correction method. The 2-D wavenumber correlation filtering and quadrant-swapping method were applied to the pre-processed data in order to eliminate dynamic components and track-line noise, respectively. Then, the spherical harmonic coefficients are calculated from KOMPSAT-1 data. To test the validity of the TAM's geomagnetic field, Danish/NASA/French ${\phi}$rsted satellite's magnetic model and IGRF2000 model were used for statistical comparison. The correlation coefficient between ${\phi}$rsted and TAM is 0.97 and IGRF and TAM is 0.96. It was found that the data from on board magnetometer observations for attitude control of Earth-observing satellites can be used to determinate the Earth's total magnetic field and that they can be efficiently used to upgrade the global geomagnetic field coefficients, such as IGRF by providing new information at various altitudes with better temporal and spatial coverage.

  • PDF

A Study on the Earth's Variation Model to Adopt Ship's Digital Compass (선박용 디지털 컴퍼스에 적용하기 위한 지구편차 모형 개발)

  • Saha Rampadha;Yim Jeong-Bin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.06b
    • /
    • pp.87-90
    • /
    • 2006
  • The Earth's spherical harmonic model of the main field and of the secular variation, of the geomagnetic field gives the intensity and geomagnetic structure at any location around the earth, assuming an undistorted, steady state field that no external sources or localized earth anamalies. To consider the practical use of a ship's digital compass in earth's magnetic field, Earth's spherical harmonic model is searched for the related practical methods and procedures as a basic study in this work.

  • PDF

A Study on the Earth's Variation Prediction Using Geomagnetic Model (지구자기 모델을 이용한 편차 추정에 관한 연구)

  • Saha, Rampadha;Yim, Jeong-Bin
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2006.11a
    • /
    • pp.131-135
    • /
    • 2006
  • The objective of the project is to model and study the geomagnetic field structure and its secular variation in space and in time due to sources in the dynamic fluid outer core. the Earth's spherical harmonic model of the main field and of the secular variation gives the intensity and geomagnetic structure at any location around the Earth, assuming an undistorted, steady state field that no external sources or localized earth anomalies. To consider the practical use of a ship's digital compass in Earth's magnetic field, Earth's spherical harmonic model is searched for the related practical methods and procedures as a basic study in this work.

  • PDF

A Method and System to Compensate Vertical Component of 3-Dimensional Magnetic Field Sensor Using The Earth's Field (지구자계를 이용한 3축 자계센서의 수직성분자계 보정방법 및 장치)

  • Jung Young-Yoon;Lim Dae-Young;Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.297-302
    • /
    • 2006
  • In this paper, a method and system to compensate vertical component of 3-dimensional magnetic field sensor using the earth's field was described. Output of magnetic field sensor have a output offset that is generated setting angle error of magnetic sensor and gain error. Thus, to using the magnetic field sensor, it must be compensated. The compensation of magnetic field sensor is required at shield space. However, using the earth's field, output offset of the sensor can be simply compensated. And, we designed system for compensation of the sensor. The proposed method and system are verified usefulness through experimental.

PRELIMINARY REPORT: DESIGN AND TEST RESULTS OF KSR-3 ROCKET MAGNETOMETERS

  • Kim, Hyo-Min;Jang, Min-Hwan;Lee, Dong-Hun;Ji, Jong-Hyun;Kim, Sun-Mi;Son, De-Rac;Hwang, Seung-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.317-328
    • /
    • 2000
  • The solar wind contributes to the formation of unique space environment called the Earth's magnetosphere by various interactions with the Earth's magnetic field. Thus the solar-terrestrial environment affects the Earth's magnetic field, which can be observed with an instrument for the magnetic field measurement, the magnetometer usually mounted on the rocket and the satellite and based on the ground observatory. The magnetometer is a useful instrument for the spacecraft attitude control as well as the Earth's magnetic field measurements for the spacecraft purpose. In this paper, we present the preliminary design and test results of the two onboard magnetometers of KARI's (Korea Aerospace Research Institute) sounding rocket, KSR-3, which will be launched four times during the period of 2001-02. The KSR-3 magnetometers consist of the fluxgate magnetometer, MAG/AIM (Attitude Information Magnetometer) for acquiring the rocket flight attitude information, and of the search-coil magnetometer, MAG/SIM (Scientific Investigation Magnetometer) for the observation of the Earth's magnetic field fluctuations. With the MAG/AIM, the 3-axis attitude information can be acquired by the comparison of the resulting dc magnetic vector field with the IGRF (International Geomagnetic Reference Field). The Earth's magnetic field fluctuations ranging from 10 to 1,000 Hz can also be observed with the MAG/SIM measurement.

  • PDF

Construction of an Earth's Field Compensation System for the Mcasurement of. Proton Gyromagnetic Ratio (양성자 자기회전비율 측정을 위한 지자장 상쇄장치 제작)

  • 우병칠;박포규;김철기;유권상;김창석
    • Journal of the Korean Magnetics Society
    • /
    • v.2 no.2
    • /
    • pp.156-162
    • /
    • 1992
  • In the measurement of proton gyromagnetic ratio by a low field cechnique, the compensation of earth's field is required to keep a zero-field space. The constant earth's fild is compensated by a cur-rent flowing through a Helmholtz coil, whereas small time-varying component is compensated automatically by a closed loop of feedback system. A feedback amplifier, and two three-dimensional Helmholtz coils having the same coil constant have been constructed in order to compensate the earth's field. field. Preliminary test performed at the ordinary laboratory showed that the time-vary-ing field of ${\pm}100nT$ and the constant field have been reduced to the level of ${\pm}10nT$ using the compensating system.

  • PDF

Extraction of Geomagnetic Field from KOMSAT-1 Three-Axis Magnetometer Data

  • Hwang, Jong-Sun;Lee, Sun-Ho;Min, Kyung-Duck;Kim, Jeong-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.242-242
    • /
    • 2002
  • The Earth's magnetic field acquired from KOMPSAT-1's TAM (Three-Axis Magnetometer) between June 19th and 21st 2000 was analyzed. The TAM, one of the KOMPSAT-1's Attitude and Orbit Control Subsystems, plays an important role in determining and controlling the satellite's attitude. This also can provide new insight on the Earth's magnetic field. By transforming the satellite coordinate from ECI to ECEF, spherical coordinate of total magnetic field was achieved. These data were grouped into dusk (ascending) and dawn (descending) data sets, based on their local magnetic times. This partitioning is essential for performing 1-D WCA (Wavenumber Correlation Analysis). Also, this enhances the perception of external fields in the Kompsat-1's TAM magnetic maps that were compiled according to different local. The dusk and dawn data are processed independently and then merged to produce a total field magnetic anomaly map. To extract static and dynamic components, the 1-D and 2-D WCAs were applied to the sub-parallel neighboring tracks and dawn-dusk data sets. The static components were compared with the IGRF, the global spherical harmonic magnetic field model. The static and dynamic components were analyzed in terms of corefield, external, and crustal signals based on their origins.

  • PDF

Magnetic Field Correction Method of Magnetometers in Small Satellites

  • Lee, Seon-Ho;Rhee, Seung-Wu;Ahn, Hyo-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.36-40
    • /
    • 2003
  • The considered satellite is supposed to operate in the earth-point mode and sun-point mode in accordance with the mission requirements. The magnetic field correction is based on the orbit geometry using a set of measured magnetic field data from the three-axis-magnetometer and its algorithm excludes the earth’s magnetic field model. Moreover, the usefulness of the proposed method is investigated throughout the simulation of KOMPSAT-1.

  • PDF