• Title/Summary/Keyword: Earth's Magnetic

Search Result 247, Processing Time 0.025 seconds

Development of Moving Alternating Magnetic Filter Using Permanent Magnet for Removal of Radioactive Corrosion Product from Nuclear Power Plant

  • M. C. Song;Kim, S. I.;Lee, K. J.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.494-501
    • /
    • 2002
  • Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). How rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters.

Dependence of Quiet Time Geomagnetic Activity Seasonal Variation on the Solar Magnetic Polarity

  • Oh, Suyeon
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2013
  • The geomagnetic activity shows the semiannual variation stronger in vernal and autumnal equinoxes than in summer and winter solstices. The semiannual variation has been explained by three main hypotheses such as Axial hypothesis, Equinoctial hypothesis, and Russell-McPherron Effect. Many studies using the various geomagnetic indices have done to support three main hypotheses. In recent, Oh & Yi (2011) examined the solar magnetic polarity dependency of the geomagnetic storm occurrence defined by Dst index. They reported that there is no dependency of the semiannual variation on the sign of the solar polar fields. This study examines the solar magnetic polarity dependency of quiet time geomagnetic activity. Using Dxt index (Karinen & Mursula 2005) and Dcx index (Mursula & Karinen 2005) which are recently suggested, in addition to Dst index, we analyze the data of three-year at each solar minimum for eight solar cycles since 1932. As a result, the geomagnetic activity is stronger in the period that the solar magnetic polarity is anti-parallel with the Earth's magnetic polarity. There exists the difference between vernal and autumnal equinoxes regarding the solar magnetic polarity dependency. However, the difference is not statistically significant. Thus, we conclude that there is no solar magnetic polarity dependency of the semiannual variation for quiet time geomagnetic activity.

Toward accurate synchronic magnetic field maps using solar frontside and AI-generated farside data

  • Jeong, Hyun-Jin;Moon, Yong-Jae;Park, Eunsu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.41.3-42
    • /
    • 2021
  • Conventional global magnetic field maps, such as daily updated synoptic maps, have been constructed by merging together a series of observations from the Earth's viewing direction taken over a 27-day solar rotation period to represent the full surface of the Sun. It has limitations to predict real-time farside magnetic fields, especially for rapid changes in magnetic fields by flux emergence or disappearance. Here, we construct accurate synchronic magnetic field maps using frontside and AI-generated farside data. To generate the farside data, we train and evaluate our deep learning model with frontside SDO observations. We use an improved version of Pix2PixHD with a new objective function and a new configuration of the model input data. We compute correlation coefficients between real magnetograms and AI-generated ones for test data sets. Then we demonstrate that our model better generate magnetic field distributions than before. We compare AI-generated farside data with those predicted by the magnetic flux transport model. Finally, we assimilate our AI-generated farside magnetograms into the flux transport model and show several successive global magnetic field data from our new methodology.

  • PDF

Analysis of Geomagnetic Field measured from KOMPSAT-1 Three-Axis Magnetometer (다목적위성 삼축자력계로부터 관측된 지구자기장에 관한 연구)

  • 김정우;황종선;김성용;이선호;민경덕;김형래
    • Economic and Environmental Geology
    • /
    • v.37 no.4
    • /
    • pp.401-411
    • /
    • 2004
  • The Earth's total magnetic field was calculated from on board TAM(Three-Axis Magnetometer) observations of KOMPSAT-1 satellite between June 19th and 21st, 2000. The TAM's telemetry data were transformed from ECI(Earth-Centered Inertial Frame) to ECEF(Earth-Centered Earth-Fixed Frame) and then to spherical coordination. Self-induced field from the satellite bus were removed by the symmetric nature of the magnetic field. The 2-D wavenumber correlation filtering and quadrant-swapping method were applied to eliminate the dynamic components and track-line noise. To test the validity of the TAM's geomagnetic field, ${\phi}$rsted satellite's magnetic model and IGRF2000 model were used for statistical comparison. The correlation coefficients between KOMPSAT-1/${\phi}$rsted and KOMPSAT-1/IGRF2000 models are 0.97 and 0.96, respectively. The global spherical harmonic coeffi-cient was then calculated from the KOMPSAT-1 data degree and order of up to 19 and compared with those from IGRF2000, $\phi$rsted, and CHAMP models. The KOMPSAT-1 model was found to be stable to degree & order of up to 5 and it can give new information for the low frequency components of the global geomagtic field.

A Review of Magnetic Exploration in Korea (한국의 자력탐사)

  • Park, Yeong-Sue;Lim, Mu-Taek;Rim, Hyoung-Rae;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.13-20
    • /
    • 2008
  • Magnetic method is rapid, cheap and simple geophysical exploration technique, and has wide range of applications such as resources prospecting, geological structure investigation and even geotechnical and environmental problems. Documents during Japanese occupation says that magnetic method was used for exploring metallic ore deposits and hot spring, and that a geomagnetic observatory was operated. From mid 1950's, magnetic explorations for natural resources such as metallic ore, uranium, coal, and groundwater were intensively executed for industrialization. Magnetic survey techniques were rapidly advanced during 1970's and 1980's with improvements of instruments, growth of geophysical manpower, and availability of computers. Decline of mining industry since mid 1980's moved the exploration objects from traditional resources to new ones such as groundwater and geothermal resources. Recently appeared applications such as natural hazard assessment, and engineering and environmental studies increased the magnetic method's utility in the realm of exploration.

  • PDF

The Study of Hydrothermal Vent and Ocean Crustal Structure of Northeastern Lau Basin Using Deep-tow and Surface-tow Magnetic Data (심해 및 표층 지자기 자료를 이용한 라우분지 북동부의 열수 분출구 및 해저 지각 구조 연구)

  • Kwak, Joon-Young;Won, Joong-Sun;Park, Chan-Hong;Kim, Chang-Hwan;Ko, Young-Tak
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Fonualei Rift and Spreading Center(FRSC) and Mangatolu Triple function(MTJ) caldera are located in northeastern part of Lau basin which is the active back-arc basin. Deep-tow and surface-tow magnetic surveys are carried out in FRSC. In deep-tow magnetic survey, to compensate for influence of uneven distance between bathymetry and sensor height, magnetic anomaly is continued upward to a level plane by using the Guspi method. We calculate crustal magnetization using Parker and Huestis's inversion algorithm, and try to find the hydrothermal vent and understand the structure of ocean floor crust. The result of deep-tow magnetic survey at FRSC showed that Central Anomaly Magnetization High(CAMH) recorded the max value of 4.5 A/m which is associated with active ridge. The direction of SSW-NNE corresponds with the direction of the principal spreading ridge in Lau basin. The low crustal magnetizaton$(174^{\circ}35.1'W,\;16^{\circ}38.4'S)$ of -4.0 A/m is supposed to correlate with submarine hydrothermal vent. Surface-tow magnetic data were collected in MTJ caldera$(174^{\circ}00'W,\;15^{\circ}20'S)$. The prevailing SSW-NNE direction of collapsing walls and the presence of CAMH at the center of caldera strongly indicate the existence of active spreading ridge in ancient times.

저궤도위성 궤도운동 및 자세에 영향을 미치는 외부교란토크 분석

  • Choi, Hong-Taek;Yong, Ki-Lyuk;Rhee, Seung-Wu
    • Aerospace Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.54-62
    • /
    • 2003
  • The satellite in space has a tiny size but is subject to the disturbance torques caused by various sources. The presence of environmental disturbance torques significantly affects the orient as well as the orbital motion of satellite. The sources of environmental effects on LEO Satellite attitude dynamics are various. Four of these, gravity gradient, Earth's magnetic field, solar radiation pressure and aerodynamic are dominant and deterministic. In this study, we describe the model of environmental disturbance torques acting on LEO Satellite and the effects of environmental disturbance torques on LEO Satellite attitude dynamics in detail.

  • PDF

Relativistic Radiation Belt Electron Responses to GEM Magnetic Storms: Comparison of CRRES Observations with 3-D VERB Simulations

  • Kim, Kyung-Chan;Shprits, Yuri;Subbotin, Dmitriy;Ni, Binbin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.90.1-90.1
    • /
    • 2012
  • Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch-angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch-angle scattering by plasmaspheric hiss inside the plasmasphere. We provide a detailed description of simulations for each of the GEM storm events.

  • PDF

Alanine and serine functionalized magnetic nano-based particles for sorption of Nd(III) and Yb(III)

  • Galhoum, Ahmed A.;Mahfouz, Mohammad G.;Atia, Asem A.;Gomaa, Nabawia A.;Abdel-Rehem, Sayed T.;Vincent, Thierry;Guibal, Eric
    • Advances in environmental research
    • /
    • v.5 no.1
    • /
    • pp.1-18
    • /
    • 2016
  • Magnetic nano-based sorbents have been synthesized for the recovery of two rare earth elements (REE: Nd(III) and Yb(III)). The magnetic nano-based particles are synthesized by a one-pot hydrothermal procedure involving co-precipitation under thermal conditions of Fe(III) and Fe(II) salts in the presence of chitosan. The composite magnetic/chitosan material is crosslinked with epichlorohydrin and modified by grafting alanine and serine amine-acids. These materials are tested for the binding of Nd(III) (light REE) and Yb(III) (heavy REE) through the study of pH effect, sorption isotherms, uptake kinetics, metal desorption and sorbent recycling. Sorption isotherms are well fitted by the Langmuir equation: the maximum sorption capacities range between 9 and 18 mg REE $g^{-1}$ (at pH 5). The sorption mechanism is endothermic (positive value of ${\Delta}H^{\circ}$) and contributes to increase the randomness of the system (positive value of ${\Delta}S^{\circ}$). The fast uptake kinetics can be described by the pseudo-second order rate equation: the equilibrium is reached within 4 hours of contact. The sub-micron size of sorbent particles strongly reduces the contribution of resistance to intraparticle diffusion in the control of uptake kinetics. Metal desorption using acidified thiourea solutions allows maintaining sorption efficiency for at least four successive cycles with limited loss in sorption capacity.

Influence of Shape Demagnetization Effect for Naval Vessel Deperming (함정의 형상 반자계 효과가 탈자에 미치는 영향)

  • Kim, Young-Hak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.2
    • /
    • pp.445-450
    • /
    • 2016
  • This paper studied on the influence of naval vessel shape on vertical magnetic field after the vessel was demagnetized. The triangular shape, the rectangular shape and circular shape were adaped from vessel's structual drawings. Magneto-static FEM analysis was performed to obtain the iduced magnetic field due to earth magnetic field for those shapes. During demagnetization process, magnetic field of residual magnetization was observed. The holizontal and vertical magnetic field were calculated depending on vertical bias magnetic field through magnetc component seperation. To demagnetize naval vessel ship, demagnetizing coils shoud be wound more finely in the vow and stern of the ship than it should be in the mid-part of the ship.