• Title/Summary/Keyword: Early-age concrete

Search Result 585, Processing Time 0.027 seconds

Bond Characteristics of Reinforced Concrete Beams According to Material Age (콘크리트 재령에 따른 철근콘크리트 보의 부착응력에 관한 실험적 연구)

  • Ryu, Soo-Hyun;Choi, Hyo-Seok;Lee, Joo-Il;Yu, Ho-Hyun;Jeong, Jae-Hun;Kim, Jin-Mu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.103-109
    • /
    • 2002
  • Reinforced concrete structure resist to external load caused by integration of steel bar and concrete and this integration is obtained from bond stress between steel bar and concrete. Researches of bond stress between steel bar and concrete have been performed by many researcher, but existent researches of bond stress are concerned with compression strength of well cured concrete and insufficient study of bond stress according to early material. The secure regular strength of concrete in early age is caused by rapid velocity of early hardening process, but questionable bond stress in early age is proportion to strength of that. So this study performed experiments to compare bond stress according to material age and compression strength. The result is showed that bonding strength in early material age compare the ratio of concrete compression strength with the ratio of maximum bond stress the later inferior on the former.

Strength Estimation Model for Early-Age Concrete Considering Microstructural Characteristics (미세구조 특성을 고려한 초기재령 콘크리트의 강도예측모델)

  • 황수덕;김의태;이광명
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.397-402
    • /
    • 2001
  • Microstructural characteristics such as hydrates and porosity greatly influence the development of concrete strength. In this study, a strength estimation model for early-age concrete considerig, the microstructural characteristics was proposed, which considers the effects of both an increment of degree of hydration and capillary porosity on a strength increment. Hydration modeling and compressive strength test with curing temperature and curing ages were carried out. By comparing test results with estimated strength, it is found that the strength estimation model can estimate compressive strength of early-age concrete with curing ages and curing temperature within a margin of error.

  • PDF

Early Age Properties of HPC Columns under Construction-Site Conditions

  • Yun, Ying-Wei;Jang, Il-Young
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.63-68
    • /
    • 2008
  • High performance concrete (HPC) is widely used in civil engineering due to its high durability and low permeability etc. Compared with ordinary concrete, HPC may develop much higher AS (autogenous shrinkage) at early age due to the relative low water cement (w/c) ratio and adding of mineral admixtures, which is one of the main reasons for early age micro-cracking of HPC structures. This paper studies the early age property of HPC columns under similar construction-site surroundings by embedded strain transducers. Results show that for HPC structure, early-age autogenous shrinkage especially within the first day after concrete pouring is pretty large. AS within the first day are 60% larger than those for 14 days in this research for all specimens. Therefore it should be taken into account for structure durability. By comparison of PHPC (plain HPC column) and RHPC (reinforced HPC column) specimens, the effects of reinforced bars on AS and temperature distribution have been analyzed. Also the influence of w/c ratio on AS is demonstrated.

Instantaneous Compliance and Creep Compliance functions of Early-Age Concrete under Quasi-Instantaneous Loading (준-순간 하중에 의한 초기재령 콘크리트의 순간 및 크리프 컴플라이언스 함수)

  • Oh Byung-Hwan;Choi Seong-Cheol;Park Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.1 s.85
    • /
    • pp.11-18
    • /
    • 2005
  • In order to accurately assess the stresses occurring in the early-age concrete, a compliance function which can consider the characteristics of early-age concrete is required. Existing compliance functions, however, have the limit that they have been deduced from the data of hardened concrete and therefore, do not take into account the fast development of material properties in early-age concrete. Furthermore, the distinction between instantaneous compliance and creep compliance is not clear in the existing experimental method. The purpose of present study is to propose a compliance function which can describe the rapid change of hardening processes in early-age concrete. To this end, a test method which can estimate the instantaneous compliance without creep effects in the early-age concrete was suggested first. Based on the suggested experimental method, tests on the instantaneous as well as creep compliance were performed using MTS automatic servo-loop test machine. The test results showed that both instantaneous and aging viscoelastic compliance, which are constants in B3 model, were functions in terms of age of concrete especially at early ages. Therefore, the modified compliance function based on B3 model was proposed to provide more realistic prediction on the behavior of early-age concrete. It is expected that the present model allows more realistic evaluation of varying stresses in concrete structures at early ages.

A model for the restrained shrinkage behavior of concrete bridge deck slabs reinforced with FRP bars

  • Ghatefar, Amir;ElSalakawy, Ehab;Bassuoni, Mohamed T.
    • Computers and Concrete
    • /
    • v.20 no.2
    • /
    • pp.215-227
    • /
    • 2017
  • A finite element model (FEM) for predicting early-age behavior of reinforced concrete (RC) bridge deck slabs with fiber-reinforced polymer (FRP) bars is presented. In this model, the shrinkage profile of concrete accounted for the effect of surrounding conditions including air flow. The results of the model were verified against the experimental test results, published by the authors. The model was verified for cracking pattern, crack width and spacing, and reinforcement strains in the vicinity of the crack using different types and ratios of longitudinal reinforcement. The FEM was able to predict the experimental results within 6 to 10% error. The verified model was utilized to conduct a parametric study investigating the effect of four key parameters including reinforcement spacing, concrete cover, FRP bar type, and concrete compressive strength on the behavior of FRP-RC bridge deck slabs subjected to restrained shrinkage at early-age. It is concluded that a reinforcement ratio of 0.45% carbon FRP (CFRP) can control the early-age crack width and reinforcement strain in CFRP-RC members subjected to restrained shrinkage. Also, the results indicate that changing the bond-slippage characteristics (sand-coated and ribbed bars) or concrete cover had an insignificant effect on the early-age crack behavior of FRP-RC bridge deck slabs subjected to shrinkage. However, reducing bar spacing and concrete strength resulted in a decrease in crack width and reinforcement strain.

Identification of Compliance Function for Early-Age Concrete Based on Measured Strain & Thermal Stress Histories (변형률 및 열응력 이력 계측을 통한 초기재령 콘크리트의 컴플라이언스 함수 추정)

  • Oh, Byung-Hwan;Shin, Joon-Ho;Choi, Seong-Cheol;Cha, Soo-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.5
    • /
    • pp.662-669
    • /
    • 2003
  • Recently, the serviceability and durability of concrete structures under thermal load have received great attention. The thermal stress and clacking behavior of concrete at early ages are one of the important factors that affect such serviceability and durability of concrete structures. Nevertheless, most studies on the behavior of early-age concrete have been confined to the temperature and strain development itself in the laboratory. The desirable efforts to explore the material properties of concrete at early-ages have not been made extensively so far. The purpose of the present study is, therefore, to identify some important material properties that affect the stress behavior of concrete at early-ages. To this end, full-scale concrete base-restrained wall members have been fabricated, and many sensors including thermocouples, strain meters and stress meters were installed inside of the wall members. These sensors were to measure the development of temperatures, strains and stresses at several location in concrete walls during the hardening and curing phase of early-age concrete. By using these measured values of strain and stress, the compliance function at early-age was identified. The basic form of compliance function derived in this study follows the double-power law. However, the results of present study indicate that the values of existing compliance functions are much lower than actual values, especially at very early-ages. It can be seen that the prediction of stresses of early-age concrete based on the proposed compliance function agrees very well with test data. The present study allows more realistic evaluation of varying stresses in early-age concrete under thermal load.

AN EXPERIMENTAL INVESTIGATION ON MINIMUM COMPRESSIVE STRENGTH OF EARLY AGE CONCRETE TO PREVENT FROST DAMAGE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Koh, Kyung-Taek;Park, Chun-Jin;Ryu, Gum-Sung;Park, Jung-Jun;Kim, Do-Gyeum;Lee, Jang-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.393-400
    • /
    • 2013
  • Concrete undergoing early frost damage in cold weather will experience significant loss of not only strength, but also of permeability and durability. Accordingly, concrete codes like ACI-306R prescribe a minimum compressive strength and duration of curing to prevent frost damage at an early age and secure the quality of concrete. Such minimum compressive strength and duration of curing are mostly defined based on the strength development of concrete. However, concrete subjected to frost damage at early age may not show a consistent relationship between its strength and durability. Especially, since durability of concrete is of utmost importance in nuclear power plant structures, this relationship should be imperatively clarified. Therefore, this study verifies the feasibility of the minimum compressive strength specified in the codes like ACI-306R by evaluating the strength development and the durability preventing the frost damage of early age concrete for nuclear power plant. The results indicate that the value of 5 MPa specified by the concrete standards like ACI-306R as the minimum compressive strength to prevent the early frost damage is reasonable in terms of the strength development, but seems to be inappropriate in the viewpoint of the resistance to chloride ion penetration and freeze-thaw. Consequently, it is recommended to propose a minimum compressive strength preventing early frost damage in terms of not only the strength development, but also in terms of the durability to secure the quality of concrete for nuclear power plants in cold climates.

A Study on the Compensation of Early Age Strength in Mortar and Concrete using Blast Furnace Slag Powder (슬래그 미분말을 사용한 모르타르 및 콘크리트의 초기강도 보상에 관한 연구)

  • 김성수;연영훈;이성수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.559-562
    • /
    • 2000
  • This study is about the compensation of early age strength on mortar and concrete admixed with blast-furnace slag powder. For study, we have used fine powder of gypsum and kiln dust from cement factory. According to the test results, we have obtained proper mixing ratio of slag powder, gypsum and kiln dust for the compensation of early age strength on mortar and concrete property.

  • PDF

A multiscale creep model as basis for simulation of early-age concrete behavior

  • Pichler, Ch.;Lackner, R.
    • Computers and Concrete
    • /
    • v.5 no.4
    • /
    • pp.295-328
    • /
    • 2008
  • A previously published multiscale model for early-age cement-based materials [Pichler, et al.2007. "A multiscale micromechanics model for the autogenous-shrinkage deformation of early-age cement-based materials." Engineering Fracture Mechanics, 74, 34-58] is extended towards upscaling of viscoelastic properties. The obtained model links macroscopic behavior, i.e., creep compliance of concrete samples, to the composition of concrete at finer scales and the (supposedly) intrinsic material properties of distinct phases at these scales. Whereas finer-scale composition (and its history) is accessible through recently developed hydration models for the main clinker phases in ordinary Portland cement (OPC), viscous properties of the creep active constituent at finer scales, i.e., calcium-silicate-hydrates (CSH) are identified from macroscopic creep tests using the proposed multiscale model. The proposed multiscale model is assessed by different concrete creep tests reported in the open literature. Moreover, the model prediction is compared to a commonly used macroscopic creep model, the so-called B3 model.

Finite Element Analysis of Flexural Composite Members Considering Early-Age Concrete Properties (콘크리트의 초기재령특성을 고려한 합성형 휨 부재의 유한요소 거동해석)

  • 강병수;주영태;신동훈;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.463-468
    • /
    • 2003
  • A finite element formulation to predict the flexural behavior of composite girder is presented in which the early-age properties of concrete are specified including maturing of elastic modulus, creep and shrinkage. The time dependent constitutive relation accounting for the early-age concrete properties is derived in an incremental format by expanding the total form of stress-strain relation by the first order Taylor series with respect to the reference time. The total potential energy of the flexural composite member is minimized to derive the time dependent finite element equilibrium equation. Numerical applications are made for the 3-span double composite steel box girders which is a composite bridge girder filled with concrete at the bottom of the steel box in the negative moment region. The numerical analysis with considering the variation of concrete elastic modulus are performed to investigate the effect of it on the early-age behavior of composite structures. The one dimensional finite element analysis results are compared with the analytical method based on the sectional analysis. Close agreement is observed among the two methods.

  • PDF