• Title/Summary/Keyword: Early-age Properties

Search Result 313, Processing Time 0.035 seconds

Mössbauer Spectroscopic Study of Non-figure Plain Coarse Pottery from Jeju Island (Mössbauer spectroscopy를 이용한 제주도 무문(無紋)토기의 연구)

  • Yoon, Tae-Gun;Ko, Jeong-Dae;Sung, Rak-Hong
    • Journal of the Korean Magnetics Society
    • /
    • v.12 no.1
    • /
    • pp.7-13
    • /
    • 2002
  • The studies of non-figure plain coarse pottery from Jeju island is very important because it can explain the characters of plain coarse potteries of the bronze age and the early iron age. In this study, We analyzed the non-figure plain coarse popery from Jeju island in two ways. One is analysis of the chemical composition using X-ray fluorescence spectrometer and X-ray diffraction, the other is analysts of clay mineral contained iron, oxidized iron's genus, valence state and magnetic properties using Mossbauer spectroscopy. We confidence that non-figure plain coarse pottery is chiefly made of silicate minerals, like SiO$_2$. The content of noncrystalline ferrihydrite is supposed to be below 5-10 wt%, non-figure plain coarse pottery is considered to partly consist of Jeju island clay, which is made of neutral volcanic rock and the valence state of iron is Fe$\^$2+/ and Fe$\^$3+/. We presume the reason that the magnetic hyperfine field is lower than that of pure goethite is the change of crystal structure which transforms the combination states of Fe ions while the clay is being fired.

A Study of Contingency Found in Soft Sculpture and Fashion -Focused on Maurice Frechuret's Type Analysis- (부드러운 조각과 패션에 나타난 우연성에 관한 고찰 -프레쉬레의 유형분석을 중심으로-)

  • Kim, Bo-Young;Geum, Key-Sook
    • Journal of the Korean Society of Costume
    • /
    • v.59 no.5
    • /
    • pp.41-52
    • /
    • 2009
  • In contemporary art, soft materials are used in various forms and ways as a medium expressing contingency beyond a simple nature of materials. In the late 1960's, the appearance of soft sculpture as a refusal of the stereotyped 'Erection' characteristic of traditional sculpture served as an opportunity for more attention to soft materials. Fashion is the reflection of age, and the mirror of society, culture and arts. In other words, soft sculpture and fashion are artistic behaviors in the same context, which have neither been fixed nor erected. This study finds its significance in analyzing correlation between soft sculpture and fashion, and the importance of contingency as artistic expression means in this age when boundaries between genres are obscure, and artistic values are given to fashion. By doing so, it aims to present the direction toward which fashion should face in the future, establishing a new aesthetic consciousness with which more creative and various expressions are available in fashion as well. This study presented as its theoretical background the concept of soft sculpture affected by Marcel Duchamp among representative examples of the contingency that started to appear in art starting in the early 20th century. It also analyzed the soft sculpture appeared in 1960s and the expression methods and features of contingency appeared in fashion after late 1990s through a new approach of piling up, hanging up, and tying, three categories classified by Maurice $Fr{\acute{e}}churet$. Common features of the contingency expressed in soft sculpture and fashion were derived in the analysis, which are intensive effects of energy, values given to physical properties themselves, and esthetics of anti-form.

Setting md Mechanical Properties of Concrete Using Saccharic Type Super Retarding Agent (당분류의 초지연제를 이용한 콘크리트의 응결 및 역학적 특성)

  • 한천구;한민철;윤치환;심보길
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.589-596
    • /
    • 2002
  • In this paper, setting and strength performances of concrete containing saccharic type super retarding agents are investigated under various kinds and contents of super retarding agents. According to test results, as super retarding agents contents increase, slump shows to be increased, while air contents decrease about 1∼2%. Setting time shows to be retarded considerably with increase of super retarding agents. It takes 20 days after mixing to reach final setting in case of concrete containing gluconic acid more than 0.3%. And 10 days after mixing in case of enhancing sucrose, white and brown sugar. Compressive strength of concrete containing super retarding agents is lower than that of plain concrete at early age. However, it keeps up with and exceeds the compressive strength of plain concrete at later age. White sugar md brown sugar shows positive performances in delaying setting time and strength compared to existing super retarding agents. n further investigations on durability are conducted, it is thought that application of white sugar as super retarding agent is available.

Strength and durability of concrete in hot spring environments

  • Chen, How-Ji;Yang, Tsung-Yueh;Tang, Chao-Wei
    • Computers and Concrete
    • /
    • v.6 no.4
    • /
    • pp.269-280
    • /
    • 2009
  • In this paper an experimental study of the influence of hot springs curing upon concrete properties was carried out. The primary variables of the investigation include water-to-binder ratio (W/B), pozzolanic material content and curing condition. Three types of hot springs, in the range $40-90^{\circ}C$, derived from different regions in Taiwan were adopted for laboratory testing of concrete curing. In addition, to compare with the laboratory results, compressive strength and durability of practical concrete were conducted in a tunnel construction site. The experimental results indicate that when concrete comprising pozzolanic materials was cured by a hot spring with high temperature, its compressive strength increased rapidly in the early ages due to high temperature and chloride ions. In the later ages, the trend of strength development decreased obviously and the strength was even lower than that of the standard cured one. The results of durability test show that concrete containing 30-40% Portland cement replacement by pozzolanic materials and with W/B lower than 0.5 was cured in a hot spring environment, then it had sufficient durability to prevent steel corrosion. Similar to the laboratory results, the cast-inplace concrete in a hot spring had a compressive strength growing rapidly at the earlier age and slowly at the later age. The results of electric resistance and permeability tests also show that concrete in a hot spring had higher durability than those cured in air. In addition, there was no neutralization reaction being observed after the 360-day neutralization test. This study demonstrates that the concrete with enough compressive strength and durability is suitable for the cast-in-place structure being used in hot spring areas.

Crustal evolution of the Precambrian basement in the Korean Peninsula

  • Lee, Seung-Gu;Hiroshi Shimizu;Akimasa Masuda;Song, Yong-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.124-131
    • /
    • 1992
  • The Sm-Nd isotopic data on the Precambrian gneisses from Gyeonggi and Sobaegsan Massifs are presented and the crustal evolution of the Precambrian basements of the Korean Peninsula is discussed with that of the Precambrian basements of East Asia. Sm-Nd isochron plots on whole rock samples from Sobaegsan Massif give the following ages and initial Nd values. Biotite gneisses: $1.05{\pm}0.07$ Ga with ${\varepsilon}_{Nd}$ (1.05 Ga)= $-12.5{\pm}0.4$ ($2{\sigma}$); granitic gneisses: $1.70{\pm}0.59$ Ga with ${\varepsilon}_{Nd}$ (1.70 Ga)=$+9.5{\pm}6$($2{\sigma}$). Initial Nd isotopic evolution diagram for the Precambrian orthogneisses from Sobaegsan Massif with the Precambrian orthogneisses in northeastern China and Japan reveals the existence of early Archean depleted-mantle in east Asia and suggests the prevalence of nearly common or similar source accountable for these Precambrian gneisses. Such a common source is shown to have LREE-enriched feature and to have been formed from the depleted-mantle in the late Archean of ca. 2.6 Ga. On the other hand, the Sobaegsan granitic gneisses in Korea are concluded to have different evolution history. Our Sm-Nd study clearly discloses that some Precambrian orthogneisses from Korea had evolved from the protolith having the similar or same geochemical properties with the Precambrian orthogneisses in Japan and northeastern China. In addition, crustal formation age of Gyeonggi Massif in southern Korea may be different from that of Sobaegasn Massif.

  • PDF

Fundamental Properties of Cement Composites Containing Lightly Burnt MgO Powders (저온 소성한 MgO 분말을 혼입한 시멘트 복합체의 기초 물성)

  • Jang, Bong-Seok;Kwon, Yong-Gil;Choi, Seul-Woo;Lee, Kwang-Myong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.225-233
    • /
    • 2011
  • The volume change in concrete takes place with changes in temperature and water content immediately after concrete casting. In the early age stage, the thermal and drying shrinkages can cause cracks that are very crucial to the durability of concrete. It was reported that when the cement with lightly-burnt MgO powder was used, the shrinkage of concrete can be reduced. This study investigates fundamental properties of cement composites with lightly burnt MgO powder by performing various experiments. The stability test results verified that MgO powder in cement composites does not cause any abnormal expansion. Also, the hydrate product analysis results obtained from MgO cement paste showed that MgO powder reduces the shrinkage at the longterm ages. In addition, the cement composites containing the proper amount of MgO powder could improve compressive strength. Finally, the shrinkage reduction from using MgO powder can be optimized by increasing MgO replacement level and curing temperature.

Effects of Cement Fineness Modulus (CFM) on the Fundamental Properties of Concrete (시멘트 입도계수(CFM)가 콘크리트의 기초적 특성에 미치는 영향)

  • Noh, Sang-Kyun;Han, Cheon-Goo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Cement Fineness Modulus (CFM) is a method of expressing the distribution of particle sizes of cement in numeric form. If CFM is controlled through crush process of cement without modifying the chemical components or mineral composition of cement, it is judged to be able to produce a cement satisfying various requirements because it is estimated to enable various approaches to cement such as high early strength, moderate heat, low heat cement and so on. Therefore, in this study, as basic research for manufacturing special cement utilizing the controls of CFM, the intention was to review the impacts of CFM on the fundamental properties of concrete. To summarize the result, as mixture characteristics of fresh concrete, ratio of small aggregate and unit quantity were gradually increased, securing greater fluidity, with an increase in CFM, while the amount of AE and SP were reduced gradually. In addition, setting time was delayed as CFM increased. Furthermore, compression strength was relatively high during initial aging as CFM became smaller, but as time passed, compression strength became smaller, and it showed the same level of strength as aging time passed about three years.

Synthesis and Mechanical Properties of Alkali-Activated Slag Concretes (무시멘트 알칼리 활성 고로슬래그 콘크리트의 배합에 따른 재료 역학적 특성)

  • Song, Jin-Kyu;Lee, Kang-Seok;Han, Sun-Ae;Kim, Young-In
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1005-1008
    • /
    • 2008
  • The purpose of this study is to estimate basic mechanical properties of alkali-activated concretes based on GGBS(Ground Granulated Blast Furnace Slag). In this study, various mix ratios of alkali activated concretes based on sodium silicate and GGBS were set to evaluate concrete's compressive strengths and strains on the basis of results of existing alkali-activated cements and preliminary concrete tests, which were already performed by authors [Ref. 1]. Compressive strengths of concretes of ages 1, 3, 7, 28, 56 and 91 days were tested and investigated, respectively, and at early ages (< 7days) alkali-activated slag concrete (AASC) showed a high strength development, compared to that of Ordinary Portland Cement (OPC). A compressive strengths of AASC at age-3days range between 18 and 24 MPa, while those of OPC range 12 and 15 MPa. The stress-strain curve after maximum stress, on the other hand, is approximately reached at a compressive strain between 0.002 and 0.0025, which mechanical property is very similar to that of OPC.

  • PDF

Effect of Various Partial Replacements of Cement with Blast Furnace Slag and Different Placing Times on Thermal Properties of Mass Concrete and Modeling Work (타설시간차에 의한 고로슬래그 미분말의 치환율별 매스콘크리트의 온도특성)

  • Kim, Jong
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.207-215
    • /
    • 2019
  • The aim of the research is analyzing the simple adiabatic temperature rising properties and the heat of hydration based on different placing timing of the mass concrete depending on various replacing ratios of blast furnace slag to comparative analyze the thermal cracking index and cracking possibility. As a result from the experiment, a suggested adiabatic temperature rising equation based on various blast furnace slag replacing ratios can be provide favorable correlation with over 0.99 of $R^2$ value by applying the initial induction period. With this relationship, more accurate prediction of the amount of the hydration heat rising and heating timing, and it is known that there is an approximately $13.1^{\circ}C$ of gap between plain concrete without blast furnace slag and concrete with 80 % of replacing blast furnace slag. To control the setting time and heat rising gap, the mix designs between top and bottom concrete casts were changed 15 cases, and D, E, H, I, and L models of controlling the heat of hydration showed 41.23 to $46.88^{\circ}C$ of core temperature and 0.98 to 1.27 of thermal cracking index. Therefore the cracking possibility was 15 to 52 % of favorable results of possibly controlling both the cracking due to the internal and external retainment and concrete temperature at early age.

Deterioration Properties of Shotcrete as Tunnel Supporter was Exposed to Harmful Ions (터널 지보용 숏크리트의 유해이온에 대한 열화특성)

  • Jung, Ho-Seop;Kim, Dong-Gyou
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.55-64
    • /
    • 2008
  • Shotcrete have become a deterioration which was exposed to harmful environments. In this study, in order to evaluate the deterioration properties of shotcrete, visual examination, compressive strength, adhesive strength, microstructural analysis were investigated up to the 60th weeks of exposure. The attack solutions for test are sodium sulfate and hydrochloric acid solution with different concentrations, respectively. From the results, although the compressive strength of shotcrete specimens and the adhesive strength between specimens and rocks were high at the early immersion age, they rapidly dropped in the subsequent phases, especially in 5% sodium sulfate and pH1 hydrochloric acid solution. With continued exposure, various harmful ions penetrated into the shotcrete specimen, reacted with the cement hydrate, and generated expansion substances. It was verified that the shotcrete specimens suffered a serious deterioration by chemical attack.