• Title/Summary/Keyword: Early frost damage

Search Result 99, Processing Time 0.03 seconds

Comparison of the Compressive Strength between Damaged Part due to Early Frost Damage and Sound Part of the Concrete in Winter (동절기 타설 콘크리트의 초기동해 피해부위와 건전부위 압축강도 발현 특성 비교)

  • Choi, Yoon-Ho;Kim, Sang-Min;Park, Byoung-Joo;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.98-99
    • /
    • 2020
  • The objective of the study is to investigate the compressive strength of damaged part by early frost damage and sound part of the concrete placed when exposed to a low temperature of -20℃ for 24 hours in normal concrete. Test results indicated that the compressive strength of damaged part was 14.5 MPa lower than that of sounf part due to early frost damage.

  • PDF

Early Frost Damage and Diagnose of Damage Depth Due to Early Frost Damage of the Concrete According to the Thickness of Members (부재 두께 변화에 따른 콘크리트의 초기동해 특성 분석 및 깊이진단)

  • Kim, Tae-Woo;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.2
    • /
    • pp.131-138
    • /
    • 2019
  • Recently, there are many structures exposed to severe outdoor environments, which results in rapid degradation of durability of the concrete structures. there can be rapid deterioration of the concrete structures from early frost damage due to the insufficient curing in low outdoor temperature condition. The objective of this study is to investigate the effect of thickness change conditions and binding material on early frost damage depth of the concrete exposed to cold weather in winter, and is to clearly assess damage depth of the concrete structure due to early frost damage. Specimens with 300x300x(150, 200, 250, 300mm) were prepared. OPC and OPC+FA+BS were adopted for binders. Test results indicate that the depth of the early frost damage was deeper with the decrease of thickness of members. The brightness of specimens were reduced when the member thickness was thinner. When determining the depth of early frost damage, it can be distinguished into dark color and relatively bright color when dried for approximately 30 minutes in the indoors of $20^{\circ}C$ in temperature and 60% in relative humidity after submerging in water for 24 hours. The dark colored part can be determined easily when measured with vernier calipers.

Pore Structures and Mechanical Properties of Early Frost Damaged Concrete using Electric Arc Furnace Slag as Aggregate (초기동결 피해를 받은 전기로 산화 슬래그 혼입 콘크리트의 공극 구조 및 역학적 특성)

  • Lee, Won-Jun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.2
    • /
    • pp.68-77
    • /
    • 2020
  • The purpose of the paper is to evaluate the pore structure and mechanical properties of early frost damaged concrete using electric arc furnace slag as aggregate. From the results, when the concrete is exposed to frost damage at an early age, the peak point of pores 100 to 150 ㎛ in diameter were transferred into larger one. When the freezing duration is not exceeded 24 hours, it is possible that the pore distribution of under the 200 ㎛ is maintained and pore size of over 500 ㎛ is not formed, and, the freezing resistance of concrete using EFG could be improved. When BFS was mixed in concrete using EFG as coarse aggregate, the relative strength is higher than that of natural coarse aggregate. Meanwhile, the elastic modulus and resonance frequency did not change significantly due to the early frost damage as compared with the compressive strength. So, it is necessary to analyze the correlation between the experimental results in order to evaluate the performance degradation due to early frost damage.

Effects of planting date for the prevention of frost-pillar damage and replanting of damaged plant on onion (Allium cepa L.) (양파 정식시기별 서릿발 피해 방지 및 피해주 재이식 효과)

  • Kwon, Young-Seok;Choi, In-Hu;Kim, Cheol-Woo;Choi, Min-Seon;Kwak, Jung-Ho;Lim, Yong-Pyo
    • Korean Journal of Agricultural Science
    • /
    • v.42 no.4
    • /
    • pp.313-318
    • /
    • 2015
  • In the year 2013, onions cultivation in Jeonnam province suffered by frost-pillar damage. To reveal the aspects of the cause and outbreak, we surveyed those damaged areas. Usually the frost-pillar damage occurred in February. But the outbreak aspect is so unforeseeable. In 2013, the damage was shown as 10.6% in onion fields including paddy fields, but no damage was noticed in 2014. The damage was noticed as 77.8% in paddy fields and 30.1% in upland. And, by the difference of the onion transplanting date, it occurred as 0.7% by the middle of November to the early of November, 22% by the middle of November and 69.0% by the early of December. If one performed the supplementary planting at $3^{rd}$ week of February, the highest survival percent was observed as 53.3%. If the date is early, another frost-pillar damage was occurred. If it's late, the damaged plant was perished with dry. In any case, we found improper transplanting caused the yield decrease. Therefore, we recommend the timely transplanting is the most important way for the prevention of frost-pillar damage in the onion cultivation.

Assessment of Ultrasonic Pulse Velocity Method for Early Detection of Frost Damage in Concrete (콘크리트의 초기동해 진단을 위한 초음파 속도법의 적용 가능성 평가)

  • Moon, Sohee;Lee, Taegyu;Choi, Heesup;Choi, Hyeonggil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.2
    • /
    • pp.193-202
    • /
    • 2024
  • This research delves into the evaluation of the suitability of ultrasonic pulse velocity as a diagnostic tool for early detection of frost damage in concrete. The investigation involves the measurement of compressive strength and ultrasonic pulse velocity concerning the depth of freezing for individual mortar specimens, followed by an analysis of their microstructure and their interrelation. The findings indicate a consistent decrease in both compressive strength and ultrasonic pulse velocity with increasing freezing depth. Furthermore, a correlation between compressive strength and ultrasonic pulse velocity concerning the depth of early frost damage is established. Consequently, the study asserts the potential of utilizing the ultrasonic pulse velocity method for early detection of frost damage in concrete, with prospects for quantifying the depth of damage through further research endeavors.

Outside -15℃ Exposure Time Impact on Early Frost Damage (외기온 -15℃에 노출시간 변화가 콘크리트의 초기동해 피해에 미치는 영향)

  • Choi, Yoon-Ho;Lee, Young-Jun;Lee, Dong-Joo;Kyoung, Young-Houck;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.85-86
    • /
    • 2019
  • In this study, when the normal concrete became a $20^{\circ}C$ image after the exposure time at an external temperature of $-15^{\circ}C$, the limit point of the early frost damage was analyzed. As a result, it was confirmed that the degree of concretion was higher than the external level after carrying in and after exposure, and that the initial Tokai damage was observed after 12 hours of exposure.

  • PDF

Outside -20℃ Exposure Time Impact on Early Frost Damage (외기온 -20℃에 노출시간 변화가 콘크리트의 초기동해 피해에 미치는 영향)

  • Choi, Yoon-Ho;Han, Jun-Hiu;Lee, Hyuk-Ju;Lee, Young-Jun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.128-129
    • /
    • 2019
  • In this study, after exposing the normal concrete outside at $-20^{\circ}C$, when the above scored $20^{\circ}C$, we analyzed the limit points of the initial early frost damage to the concrete. As a result, it was confirmed that the degree of the upper part of the concrete when it was exposed outside the freezing point for 6 hours was zero.

  • PDF

EFFECT OF HEAT CURING METHODS ON THE TEMPERATURE HISTORY AND STRENGTH DEVELOPMENT OF SLAB CONCRETE FOR NUCLEAR POWER PLANT STRUCTURES IN COLD CLIMATES

  • Lee, Gun-Che;Han, Min-Cheol;Baek, Dae-Hyun;Koh, Kyung-Taek
    • Nuclear Engineering and Technology
    • /
    • v.44 no.5
    • /
    • pp.523-534
    • /
    • 2012
  • The objective of this study was to experimentally investigate the effect of heat curing methods on the temperature history and strength development of slab concrete exposed to $-10^{\circ}C$. The goal was to determine proper heat curing methods for the protection of nuclear power plant structures against early-age frost damage under adverse (cold) conditions. Two types of methods were studied: heat insulation alone and in combination with a heating cable. For heat curing with heat insulation alone, either sawdust or a double layer bubble sheet (2-BS) was applied. For curing with a combination of heat insulation and a heating cable, an embedded heating cable was used with either a sawdust cover, a 2-BS cover, or a quadruple layer bubble sheet (4-BS) cover. Seven different slab specimens with dimensions of $1200{\times}600{\times}200$ mm and a design strength of 27 MPa were fabricated and cured at $-10^{\circ}C$ for 7 d. The application of sawdust and 2-BS allowed the concrete temperature to fall below $0^{\circ}C$ within 40 h after exposure to $-10^{\circ}C$, and then, the temperature dropped to $-10^{\circ}C$ and remained there for 7 d owing to insufficient thermal resistance. However, the combination of a heating cable plus sawdust or 2-BS maintained the concrete temperature around $5^{\circ}C$ for 7 d. Moreover, the combination of the heating cable and 4-BS maintained the concrete temperature around $10^{\circ}C$ for 7 d. This was due to the continuous heat supply from the heating cable and the prevention of heat loss by the 4-BS. For maturity development, which is an index of early-age frost damage, the application of heat insulation materials alone did not allow the concrete to meet the minimum maturity required to protect against early-age frost damage after 7 d, owing to poor thermal resistance. However, the combination of the heating cable and the heat insulating materials allowed the concrete to attain the minimum maturity level after just 3 d. In the case of strength development, the heat insulation materials alone were insufficient to achieve the minimum 7-d strength required to prevent early-age frost damage. However, the combination of a heating cable and heat insulating materials met both the minimum 7-d strength and the 28-d design strength owing to the heat supply and thermal resistance. Therefore, it is believed that by combining a heating cable and 4-BS, concrete exposed to $-10^{\circ}C$ can be effectively protected from early-age frost damage and can attain the required 28-d compressive strength.

Emerging Research Advancements to Overcome the Peach Spring Frost

  • Pandiyan Muthuramalingam;Rajendran Jeyasri;Yeonju Park;Seongho Lee;Jae Hoon Jeong;Yunji Shin;Jinwook Kim;Sangmin Jung;Hyunsuk Shin
    • Research in Plant Disease
    • /
    • v.29 no.3
    • /
    • pp.220-233
    • /
    • 2023
  • The phenomena of global warming has led to an increase in the average air temperature in temperate climates. Springtime frost damage is becoming more common, and after a period of dormancy, damage to buds, blooms, and developing fruits is greater significant than damage from low winter temperatures. Peaches are a crucial crop among moderate fruits. Spring frost damage in peaches can have a negative effect on crop growth, yield, and quality. It is noteworthy that these plants have evolved defenses against spring frost damage while being exposed to a variety of low temperatures in the early spring. In this current review, recent research advancements on spring frost damage avoidance in peaches were deliberated. Additionally, adaptive mechanisms of peach, such as deacclimation and reacclimation, were emphasized. Moreover, the emerging advancements using various omics approaches revealed the peach physiology and molecular mechanisms comprehensively. Furthermore, the use of chemical products and understanding the spring frost mechanisms through the use of environmental chamber temperature stimulation and infrared thermography studies were also discussed. This review is essential groundwork and paves the way to derive and design future research for agronomists and horticulturalists to overcome the challenges of spring frost damage avoidance and crop management in these circumstances.

The Effect of Early Frost Damage after Placement on Compressive Strength of Concrete (타설 직후의 동해가 콘크리트의 압축강도에 미치는 효과)

  • Lee, Yun;Kim, Jin-Keun;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.1199-1202
    • /
    • 2001
  • The objective of this study is to examine the effect of frost damage immediately after placement on compressive strength of concrete. Obviously frost damage produced under low curing temperature at early ages causes the loss of compressive strength of concrete. In order to find the degrees of the loss of compressive strength, compressive strength tests was peformed at 7 and 28-day ages on concrete specimen with various curing temperature history. The results from the tests showed that the loss of compressive strength relative to concrete cured under isothermal temperature at $20^{\circ}C$ was generally from 20 to 50% for 7-day ages and below 20% for 28 day ages. Considering the serious loss of compressive strength over 50% for some cases, careful attention may be needed to placing of concrete under low atmospheric temperature.

  • PDF