• Title/Summary/Keyword: Early Skip 방법

Search Result 13, Processing Time 0.018 seconds

Fast Mode Decision Method for HEVC in Depth Video (HEVC를 위한 깊이 영상 고속 모드 결정 방법)

  • Yoon, Da-Hyun;Ho, Yo-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.51-56
    • /
    • 2012
  • In order to reduce the complexity of HEVC, we propose a fast mode decision algorithm in depth videos. Since almost CU mode is decided as SKIP mode in depth-continuity regions, we design the algorithm using the property of depth videos. If cost of SKIP is smaller than the multiplication between the threshold for EarlySKIP and average cost of SKIP, EarlySKIP is performed. Otherwise, we calculate Inter $2N{\times}2N$. Then, if motion vector of Inter $2N{\times}2N$ is 0 and variance of CU is smaller than threshold for inter, we skip Inter $2N{\times}N$, Inter $N{\times}2N$. Experimental results show that our proposed algorithm reduces the encoding time from 39% to 82% with negligible PSNR loss and bitrate increase.

Early Termination Algorithm of Merge Mode Search for Fast High Efficiency Video Coding (HEVC) Encoder (HEVC 인코더 고속화를 위한 병합 검색 조기 종료 결정 알고리즘)

  • Park, Chan Seob;Kim, Byung Gyu;Jun, Dong San;Jung, Soon Heung;Kim, Youn Hee;Seok, Jin Wook;Choi, Jin Soo
    • Journal of Broadcast Engineering
    • /
    • v.18 no.5
    • /
    • pp.691-701
    • /
    • 2013
  • In this paper, an early termination algorithm for merge process is proposed to reduce the computational complexity in High Efficiency Video Coding (HEVC) encoder. In the HEVC, the same candidate modes from merge candidate list (MCL) are shared to predict a merge or merge SKIP mode. This search process is performed by the number of the obtained candidates for the both of the merge and SKIP modes. This may cause some redundant search operations. To reduce this redundant search operation, we employ the neighboring blocks which have been encoded in prior, to check on the contextual information. In this study, the spatial, temporal and depth neighboring blocks have been considered to compute a correlation information. With this correlation information, an early termination algorithm for merge process is suggested. When all modes of neighboring blocks are SKIP modes, then the merge process performs only SKIP mode. Otherwise, usual merge process of HEVC is performed Through experimental results, the proposed method achieves a time-saving factor of about 21.25% on average with small loss of BD-rate, when comparing to the original HM 10.0 encoder.

Fast Coding Mode Decision for MPEG-4 AVC|H.264 Scalable Extension (MPEG-4 AVC|H.264 Scalable Extension을 위한 고속 모드 결정 방법)

  • Lim, Sun-Hee;Yang, Jung-Youp;Jeon, Byeung-Woo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.6
    • /
    • pp.95-107
    • /
    • 2008
  • In this paper, we propose a fast mode decision method for temporal and spatial scalability to reduce computational complexity of mode decision that used to be computationally one of the most intensive processes of the MPEG-4 AVC|H.264 SE(Scalable Extension) encoding. For temporal scalability, we propose an early skip method and MHM(mode history map) method. The early skip method confines macroblock modes of backward and forward frames within selected a few candidates. The MHM method utilizes stored information of frames inside a GOP of lower levels for the decision of MHM at higher level. For the spatial scalability, we propose the method that uses a candidate mode according to the MHM method and adds the BL_mode as candidates. The proposed scheme reduces the number of candidate modes to reduce computational complexity in mode decision. The proposed scheme reduces total encoding time by about 52% for temporal scalability and 47% for spatial scalability without significant loss of RD performance.

Fast Coding Mode Decision for Temporal Scalability in H.264/AVC Scalable Extension (시간적 계층에서의 스케일러블 부호화 고속 모드 결정 방법)

  • Jeon, Byeungwoo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.2
    • /
    • pp.71-75
    • /
    • 2013
  • Recently proliferating heterogeneous multimedia service environments should be able to deal with many different transmission speeds, image sizes, or qualities of video. However, not many existing video compression standards satisfy those necessities. To satisfy the functional requirements, the standardization of the H.264/AVC Scalable Extension (SE) technique has been recently completed. It is an extension of the H.264/AVC which can encode several image sizes and qualities at the same time as a single bitstream. To perform optimum mode decision, motion estimation is performed for all MB modes, and the RD costs are compared to identify an MB mode with the smallest RD cost. This increases computational complexity of H.264/AVC SE encoding. In this paper, we propose an early skip mode detection scheme to reduce candidate modes and suggest an algorithm of fast mode decision utilizing reference modes according to the mode history.

Fast Coding Mode Decision for H.264 Video Coding (H.264 동영상 압축을 위한 고속 부호화 모드 결정 방법)

  • 이제윤;전병우
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.6
    • /
    • pp.165-173
    • /
    • 2004
  • H.264 is the newest international video coding standard that provides high coding efficiency. A macroblock in H.264 has 7 different motion-compensation block sizes in the Inter mode, and several different prediction directions in the Intra mode. In order to achieve as highest coding efficiency as possible, H.264 reference model employs complex mode decision technique based on rate-distortion (RD) optimization which requires high computational complexity. In this paper, we propose two techniques -'early SKIP mode decision' and 'selective intra mode decision' - which can further reduce the computational complexity. Simulation results show that without considerable performance degradation, the proposed methods reduce encoding time by 30% on average and save the number of computing rate-distortion cost by 72%.

A Fast Macroblock Mode Decision Method using PSNR Prediction for H.264/AVC (H.264/AVC에서 PSNR 예측을 이용한 고속 매크로블록 모드 결정 방법)

  • Park, Sung-Jae;Myung, Jin-Su;Sim, Dong-Gyu;Oh, Seoung-Jun
    • Journal of Broadcast Engineering
    • /
    • v.13 no.1
    • /
    • pp.137-151
    • /
    • 2008
  • H.264/AVC is showed high coding efficiency more than previous video coding standard by using new coding tools. Specially, Variable block-based motion estimation and Rate-Distortion Optimization are very important coding tools in H.264/AVC. These coding tools have high coding efficiency, however the encoder complexity greatly increase due to these coding tools. In this paper, we propose early SKIP mode decision and selective inter/intra mode decision to reduce the computational complexity. Simulation results show that the proposed method could reduce encoding time of the overall sequences by 30% on average than JM 10.2 without noticeable degradation of coding efficiency. Besides, the proposed method runs over twice as fast as the previous proposed Fast Coding Mode Selection method (FCMS)[5].

Early Decision of Inter-prediction Modes in HEVC Encoder (HEVC 부호화기에서의 화면 간 예측모드 고속 결정)

  • Han, Woo-Jin;Ahn, Joon-Hyung;Lee, Jong-Ho
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.171-182
    • /
    • 2015
  • HEVC can increase the coding efficiency significantly compared with H.264/AVC however it requires much larger computational complexities in both encoder and decoder. In this paper, the decision process of inter-prediction modes in the HEVC reference software has been studied and a fast algorithm to reduce the computational complexity of encoder and decoder is introduced. The proposed scheme introduces a early decision criteria using the outputs of uni-directional predictions to skip the bi-directional prediction estimation. From the experimental results, it was proven that the proposed method can reduce the encoding complexity by 12.0%, 14.6% and 17.2% with 0.6%, 1.0% and 1.5% of coding efficiency penalty, respectively. In addition, the ratio of bi-directional prediction mode was reduced by 6.3%, 11.8% and 16.6% at the same level of coding efficiency penalty, respectively, which should lead to the decoder complexity reduction. Finally, the effects of the proposed scheme are maintained regardless of the use of the early skip decision algorithm which is implemented in the HEVC reference software.

A Fast Inter Mode Decision Algorithm Considering Quantization Parameter in H.264 (H.264 표준에서 양자화 계수를 고려한 고속 인터모드 결정 방법)

  • Kim, Geun-Yong;Ho, Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.11-19
    • /
    • 2006
  • The recent video coding standard H.264 employs the rate-distortion optimization (RDO) method for choosing the best coding mode; however, it causes a large amount of encoding time. Thus, in order to reduce the encoding time, we need a fast mode decision algorithm. In this paper, we propose a fast inter mode decision algorithm considering quantization parameter (QP). The occurrence of best modes depends on QP. In order to reflect these characteristics, we consider the coded block pattern (CBP) which has 0 value when all quantized discrete cosine transform (DCT) coefficients are zero. We also use the early SKIP mode decision and early $16{\times}16$ mode decision methods. By computer simulations, we have verified that the proposed algorithm requires less encoding time than the fast inter mode decision method of the H.264 reference software for the Baseline and Main profiles by 19.6% and 18.8%, respectively.

An Efficient H.264/AVC Encoding Using GOP Based Adaptive Inter Prediction (GOP 기반의 적응적 인터 예측을 이용한 다시점 비디오의 효율적인 H.264/AVC 부호화)

  • Lee, Jung-Ho;Cho, Ik-Hwan;Lee, Woong-Ho;Jeong, Dong-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.12C
    • /
    • pp.1224-1231
    • /
    • 2006
  • This paper proposes a fast encoding algorithm of H.264/AVC multi-view video coding. The amount of data to be encoded for a multi-view video is much more than normal video's data, and the amount of information to be predicted is enormous because of the multi-view video coding uses inter-disparity prediction in addition to inter-motion prediction in conventional video coding. We noticed through an experiment that the efficiency of prediction is getting better in order of intra, inter-disparity, inter-motion, and inter-skip, and proposes a early termination algorithm by means of estimate the adaptive threshold within a GOP unit. In the experiments, the proposed algorithm shows improved processing speed about 32% compared to existing method, and increased amount of bits and distortions are relatively disregardable.

Fast HEVC Encoding based on CU-Depth First Decision (CU 깊이 우선 결정 기반의 HEVC 고속 부호화 방법)

  • Yoo, Sung-Eun;Ahn, Yong-Jo;Sim, Dong-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.3
    • /
    • pp.40-50
    • /
    • 2012
  • In this paper we propose the fast CU (Coding Unit) mode decision method. To reduce computational complexity and save encoding time of HEVC, we divided CU, PU (Prediction Unit) and TU (Transform Unit) decision process into two stages. In the first stage, because $2N{\times}2N$ PU mode is mostly selected among $2N{\times}2N$, $N{\times}2N$, $2N{\times}N$, $N{\times}N$ PU modes, proposed algorithm uses only $2N{\times}2N$ PU mode deciding depth of each CU in the LCU (Largest CU). And then, proposed method decides exact PU and TU modes at the depth level which is decided in the first stage. In addition, early skip decision rule is applied to the proposed method to obtain more efficient computational complexity reduction. The proposed method reduces computational complexity of the HEVC encoder by simplifying a CU depth decision method. We could obtain about 50% computational complexity reduction in comparison with HM 3.3 HEVC reference software while bitrate compressed by the proposed algorithm increases only 2%.