• Title/Summary/Keyword: Early Compressive Strength

Search Result 652, Processing Time 0.026 seconds

A Study on Early Evaluation Method of Durability of PC Concrete According to the Accelerated Curing Conditions (촉진양생조건에 따른 PC콘크리트의 내구성 조기 평가기법 연구)

  • 김관호;박광수;신수균;이준구;장문기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.169-174
    • /
    • 2002
  • We can consider that the study on early evaluation of compressive strength and durability of concrete is useful to raise safety of quality control of concrete. In this paper, was proposed to method early to predict strength and durability of concrete with parameter, such as Water/cement(W/C) ratio and steam curing conditions. Through analyzing the relationship between the compressive strength and the amount of chloride penetration into concrete specimens, a new formula early estimating durability of the concrete structure was suggested.

  • PDF

Properties of Early Strength Development according to the Replacing Method of Admixture of Concrete Using AE Water Reducing Agent of Early-Strength Type (조기강도 발현형 AE감수제를 사용한 콘크리트의 혼화재 치환방법 변화에 따른 초기 강도발현 특성)

  • 황인성;우종완;김규동;이승훈;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.269-272
    • /
    • 2003
  • This study is intended to investigate the properties of concrete using AE Water Reducing Agent of Early-Strength Type. According to the results, as for the replacing method of mineral admixture, setting time is shortened faster in order of replacement for fine aggregate, combination and replacement for cement, and when AE Water Reducing Agent of Early-Strength Type is used, it is shortened by about 4 hours, compared with normal AE Water Reducing Agent Compressive strength is lower in the case of replacement for fine aggregate, but higher in the other case than that of plain concrete. And When AE Water Reducing Agent of Early-Strength Type is used, early compressive strength is very high in comparison to normal AE Water Reducing Agent. Early strength development is very favorable by the use of AE Water Reducing Agent of Early-Strength Type regardless of the replacing method of mineral admixture at $20^{\circ}C$, but at $l0^{\circ}C$, it is effective for Early strength development that W/B is lowered to below 45%, BS of 20% is replaced for fine aggregate, and AE Water Reducing Agent of Early-Strength Type is used.

  • PDF

Early Estimation of Compressive Strength of Concrete Using Mineral Admixture by Refrigeration Curing Method (냉동양생에 의한 광물질 혼합 콘크리트의 압축강도 추정)

  • Sung , Chan-Yong;Cho , Il-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.5
    • /
    • pp.55-60
    • /
    • 2004
  • This study was performed to evaluate the early estimation of compressive strength of concrete using mineral admixture by refrigeration curing method. It was a method of early decision for the property of concrete after the curing age 28days through the refrigeration curing at $-18{\pm}3^{\circ}$ for five hours. The test result was fixed connection between the curing age 28days and 31hours by the compressive strength test through the standard curing and refrigeration curing. Accordingly, it can be reduced the mistake of construction work by forecasting the property of concrete through the refrigeration curing.

Estimation of Compressive Strength at Early Age of Hardened Concrete Using Rubber Hardness Meter (고무경도계를 활용한 경화 콘크리트의 초기재령 압축강도 추정)

  • Han, Soo-Hwan;Choi, Yoon-Ho;Hyun, Seung-Yong;Kim, Jong;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.181-182
    • /
    • 2020
  • This study investigates the feasibility tp estimate the compressive strength at early age in hardened concrete by applying Durometer D type. The result of the experiment showed that the compressive strength reached 5MPa 6 hours, and 55 HD when the hardness was measured with the type D of the Duometer. Through this, it is expected that it will be possible to estimate the compressive strength of the initial age and measure it by the age of 28 when using the Durometer D type in the ready-mixed concrete, which will be applied in practice.

  • PDF

Evaluation of early age mechanical properties of concrete in real structure

  • Wang, Jiachun;Yan, Peiyu
    • Computers and Concrete
    • /
    • v.12 no.1
    • /
    • pp.53-64
    • /
    • 2013
  • The curing temperature is known to influence the rate of mechanical properties development of early age concrete. In realistic sites the temperature of concrete is not isothermal $20^{\circ}C$, so the paper measured adiabatic temperature increases of four different concretes to understand heat emission during hydration at early age. The temperature-matching curing schedule in accordance with adiabatic temperature increase is adopted to simulate the situation in real massive concrete. The specimens under temperature-matching curing are subjected to realistic temperature for first few days as well as adiabatic condition. The mechanical properties including compressive strength, splitting strength and modulus of elasticity of concretes cured under both temperature-matching curing and isothermal $20^{\circ}C$ curing are investigated. The results denote that comparing temperature-matching curing with isothermal $20^{\circ}C$ curing, the early age concretes mechanical properties are obviously improved, but the later mechanical properties of concretes with pure Portland and containing silica fume are decreased a little and still increased for concretes containing fly ash and slag. On this basement using an equivalent age approach evaluates mechanical properties of early age concrete in real structures, the model parameters are defined by the compressive strength test, and can predict the compressive strength, splitting strength and elasticity modulus through measuring or calculating by finite element method the concreted temperature at early age, and the method is valid, which is applied in a concrete wall for evaluation of crack risking.

Early-Age Properties of Polymer Fiber-Reinforced Concrete

  • Myers, Daniel;Kang, Thomas H.K.;Ramseyer, Chris
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.9-14
    • /
    • 2008
  • The cracking problem in concrete is widespread and complex. This paper reviews the problem and focuses on those parts of the problem that are more readily solved. Polymer fibers are shown to have promise in several important areas of the cracking problem. To investigate one of these areas of the cracking problem more completely, an experimental research program focusing on the early-age properties of fibers was carried out. This study researched the properties of four polymer fibers; two of the fibers were macrofibers, and two were microfibers. Each fiber was tested at several dosage rates to identify optimum dosage levels. Early-age shrinkage, long-term shrinkage, compressive strength, and tensile strength were investigated. Long-term shrinkage and strength impacts from the polymer fibers were minimal; however, the polymer fibers were shown to have a great impact on early-age shrinkage and a moderate impact on early-age strength.

The Effect of Properties of The Compressive Strength of High-Strength Concrete under High Temperature conditions at an Early Age (초기고온이력이 고강도콘크리트의 압축강도특성에 미치는 영향)

  • Ham, Eun-Young;Kim, Gyu-Yong;Koo, Kyung-Mo;Yoon, Min-Ho;Yoo, Jea-Kang;Miyauchi, Hiroyuki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.115-116
    • /
    • 2013
  • Property of the compressive strength of high strength concrete was investigated in adiabatic temperature history considering hot-weather conditions. As a result, compressive strength of specimens subjected to high temperature history showed more than 120% at 3days of age compare to standard cured specimens. But, at 91days of age showed the incidence of strength less than 100%.

  • PDF

Experiment Study on the Improvement of the Early-Age Strength of Fly Ash Concrete Using CSA (CSA를 사용한 플라이애시 콘크리트의 초기강도 개선을 위한 실험연구)

  • Park, Ji-Sun;Jeon, Chan-Soo
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.687-694
    • /
    • 2013
  • This study was performed with an aim to improve the early-age strength of concrete containing fly ash, which is known to increase the long-age strength of concrete, reduce drying shrinkage, and enhance water tightness. The composition was partially substituted with calcium sulfoaluminate (CSA), from which ettringite is actively produced, in the early stages of hydration to verify its effect on improving the early-age strength and to determine the optimal mixing ratio. For this purpose, up to 30 % of the cement weight was substituted with fly ash, and the amount of CSA substitution was 8% of the fly ash weight. The mixtures were then fabricated into concrete specimens for compressive strength measurement and analysis of the correlation between the hydration products and the compressive strength.

An Experimental Study on the Compressive Strength of Cement Mortar mixing Anion Exchange Resin (음이온교환수지 혼입 시멘트 모르타르의 압축강도에 관한 실험적 연구)

  • Jeong, Do-Hyun;Lee, Yun-Su;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.54-55
    • /
    • 2018
  • Reinforced concrete is a building material that is generally used in modern society. Securing the performance of reinforced concrete is directly connected to the durability and longevity of the building. One of the major factors that deteriorate the durability of concrete is harmful ion. Recently, the quality and improvement method of reinforced concrete for penetration of harmful ion has been studied. In this study, the bead type ion exchange resin is substituted for 0%, 3%, and 6% of the fine aggregate volume in the mortar. The speciments underwent underwater curing and were checked for compressive strengths of 3 days and 28 days. From the results of compressive strength, it can be seen that the higher the substitution ratio of the ion exchange resin, the lower the early strength and long-term strength development, especially the early strength development.

  • PDF

Strength Development of the Concrete at Early Age subjected to Low Temperature depending on Admixture Types (혼화재 종류 변화에 따른 저온조건하 콘크리트의 초기강도 발현 특성)

  • Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.145-151
    • /
    • 2007
  • In this paper, tests are carried out in order to investigate the strength development of concrete under various binder types, W/B and curing temperature ranged from $5{\sim}20^{\circ}C$. Fly ash and blast furnace slag were incorporated by as much as 30%, respectively. Strength development of concrete are estimated using Logistic model and strength ratio of concrete at 28days to that at early age are also investigated. According to experimental results, it is found that good agreements are obtained between measured values and calculated ones using logistic model below $20^{\circ}C$. Strength ratio of concrete at 28days to that at early age increases in case W/B decreases and curing temperature increases. Tables and graphs for strength ratio of concrete are provided in this paper. It is capable of obtaining and predicting the periods to attain design strength by considering increment factor of strength easily with the table and graphs presented in this paper. This paper presents the reference data to decide removal time of form, time to reach target strength and strength inspection of remicon whether the test specimens meet the specified criteria of compressive strength. Multi regression models with respect to the relationship between 7days compressive strength and 28 days compressive strength depending on W/B and admixture types are presented.