• Title/Summary/Keyword: EWMA 제어 모수

Search Result 2, Processing Time 0.018 seconds

A Simulation study of EWMA control using dynamic control parameter (동적 모수를 사용한 EWMA 제어의 시뮬레이션 연구)

  • Kang, Seok-Chan;Hwang, Ji-Bin;Kim, Sung-Shick;Kim, Ji-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.2
    • /
    • pp.37-44
    • /
    • 2007
  • EWMA is one of the most popular controller method used in Run-to-Run control system for semiconductor manufacturing. The value of the control parameter in EWMA has major effect on the result. Therefore, it is important to use control parameter value fitting for the process state. When the process is unstable, it is more efficient to change EWMA control parameter dynamically to compensate for the changing process state than using fixed control parameter. In this paper, we review previous studies using dynamic EWMA control parameter and propose a new algorithm complementing the weaknesses of the previous studies. The performance of the proposed algorithm is validated using simulation.

  • PDF

Optimal Adjustment of Misestimated Control Model for a Process with Shift and White Noise (백색잡음과 Shift가 존재하는 공정에서 제어식이 부정확한 경우의 최적 보정)

  • Hwang, Ji-Bin;Kim, Ji-Hyun;Lee, Jae-Hyun;Kim, Sung-Shick
    • Journal of the Korea Society for Simulation
    • /
    • v.16 no.4
    • /
    • pp.43-55
    • /
    • 2007
  • Moving average(MA) and exponentially weighted moving average(EWMA) are the two most popular control methods in manufacturing. Both methods are optimized under the assumption that the exact control equation is known. This paper focuses on the problems rising from estimation errors. Based on the accuracy of the estimated parameter and the range of the weight parameter $\lambda$, the limitations are identified and the performance of methods are evaluated. Optimal adjustment for process shift with misestimated control model and its application control methods to actual process is researched. The efficiency of proposed method is evaluated through simulation.

  • PDF