• Title/Summary/Keyword: EVAL

Search Result 42, Processing Time 0.016 seconds

Thermal Maturation and Diagenesis of the Gyeongsang Supergroup, Euiseong Area, SE Korea (의성지역 경상누층군의 열적진화와 속성작용)

  • Son Byeong-Kook;Cheong Tae-Jin;Oh lae-Ho;Kwak Young-Hoon
    • The Korean Journal of Petroleum Geology
    • /
    • v.2 no.2 s.3
    • /
    • pp.83-90
    • /
    • 1994
  • Thermal maturation and diagenesis of the Gyeongsang Supergroup in the Euiseong area are studied by means of organic geochemical techniques and illite crystallinity. Black mudrocks of the Singdong Group contain organic matter of $0.5{\~}2{\%}$ derived from higher plants, being compared to type Ⅲ. Thermal maturity of organic matter reached dry gas generation phase. Tmax by Rock Eval pyrolysis varies between $578^{\circ}C$ and $593^{\circ}C$ regardless of stratigraphic position and localities, and vitrinite reflectance is about 2.9 and $3{\~}4{\%}Ro$ in the Jinju and the Nagdong Formations, respectively. Vitrinite reflectance measurements indicate that the maturation is mainly due to burial and partly to be affected by post-depositional intrusions. Illite crystallinity values from the Nagdong, Hasandong, Jiniu Formations and part of the Iljig Formation are plotted around the boundary between diagenesis and anchizone, indicating dry gas generation stage. However, the values are not dependent on stratigraphic position. The values from the Iljig, Hupyeongdong, Geomgog, and Sagog Formations fall into the range of anchizone, probably resulted from the post-depositional intrusions which occur locally. Both organic geochemical and illite crystallinity data indicate thermal maturation stage of dry gas generation. Diagenesis of the Gyeongsang strata is mostly controlled by burial, and partly affected by post-depositional intrusions. Paleotemperature of the Sindong Group is estimated at around $200^{\circ}C$ on the basis of illite crystallinity.

  • PDF

Assessment of Water Quality in Pyeongtaek Reservoir and Its Main Tributaries (평택호와 유역 주요 하천의 수환경 및 오염도 평가)

  • Hwang, Soon-Jin;Cho, Kyung-Je;Shin, Jae-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.1 s.102
    • /
    • pp.38-47
    • /
    • 2003
  • The water quality of the Pyeongtaek Reservoir and its main streams has been eval uated far water pollution state in March, June, September and December,2000. The following are the findings: $NH_4$ accounts for the majority of TN in the inflow streams. In the reservoir, TN and $NH_4$ are the more present in the winter season and less in the summer season, with $1.6{\sim}2.4$ times of $NO_3$ and $5.3{\sim}11.4$ times of $NO_2$ found in December and June compared with other seasons. The concentration of each component is different between streams: $NH_4$ among inorganic nitrogen has the highest concentration in the upstream, and $NO_3$ is more prevalent in the downstream. SRP accounts for $25{\sim}69%$ of TP in the stream. Unlike N component, P component in the reservoir rapidly decreases from upstream toward downstream, except in the summer. Average SRSi slightly increases in the fall, i.e., immediately after rainfall. In the streams, the average concentration of chlorophyll-a ranges from 9 to $33{\mu}g/l$, and is relatively high in the downstream. In contrast, in the reservoir, it is the highest in the upstream where $NH_4$ and SRP are frequently found. In particular, diatom and cryptomonad algae are bloomed in March, and blue-green algae in September; their maximum values are $108{\mu}g/l$ and $130{\mu}g/l$, respectively. Considering the concentration of N and P nutrients, pollution loads can affect the Pyeongtaek Reservoir in the downstream in this order: Ansong Stream