• Title/Summary/Keyword: EUTROPHICATION

Search Result 643, Processing Time 0.026 seconds

Assessing Effects of Farming Activities on the Water Quality in a Small Agricultural Watershed (충남 고성천 유역의 하천 수질 평가를 이용한 유역단위 질소와 인 수지 분석)

  • Kim, Min-Kyeong;Roh, Kee-An;Park, Seong-Jin;Choi, Chul-Mann;Ko, Byong-Gu;Yun, Sun-Gang;Lee, Jong-Sik
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.32-37
    • /
    • 2009
  • This study was conducted to assess the impact of agricultural land use on the water quality in mountain village farmlands. Two soil types, paddy and upland soil were analysed for their chemical properties. Although, pH and organic matter contents were not significantly different to each other, concentrations of available P and exchangeable K and Ca were much higher in upland soil compared with those in paddy soil. The results of water quality analysis indicated that, in Goseong-cheon watershed, the nutrients contents were much higher in downstream area than in upstream area. Particularly, the elevation of $COD_{Mn}$ and T-P were significant during rainy season. When paddy fields coexist with upland fields, SS, T-N, and T-P concentrations in paddy fields were lower than those of upland fields. This may indicate that paddy fields possess an water-purifying ability by absorbing nutrients. This effect may reduce excessive nutrients discharged into the neighboring streams which may cause eutrophication problem. The difference between inflow and outflow of nitrogen and phosphorus during the cultivation period were measured as -98.9 kg $ha^{-1}$ and -29.7 kg $ha^{-1}$, which means that nutrient outflow was higher than inflow. This may suggest that much nutrient was discharged during the crop harvest period.

Evaluation of Ammonia Emission Following Application Techniques of Pig Manure Compost in Upland Soil (밭 토양에서 돈분 퇴비 시용방법에 따른 암모니아 휘산량 평가)

  • Yun, Hong-Bae;Lee, Youn;Lee, Sang-Min;Kim, Suk-Chul;Lee, Yong-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.28 no.1
    • /
    • pp.15-19
    • /
    • 2009
  • Ammonia in atmosphere has a negative effect on the natural ecosystems, such as soil acidification and eutrophication, by wet and dry deposition. Livestock manure, compost, and fertilizer applications to arable land have been recognised as a major source of atmospheric ammonia emissions. The objective of this study was to evaluate the efficiency of compost application techniques in reducing ammonia loss in upland soil. The reductions in ammonia emission were 70 and 15% for immediate rotary after application (IRA) and rotary at 3 day after application (RA-3d) in comparison with surface application (SA). Total ammonia emissions for 13 days, expressed as % ammonia-N applied with compost, were 42, 35.7, and 12.7% for SA, RA-3d, and IRA treatments, respectively. The ammonia emission rate fell rapidly 6 h after application and 61 % of total ammonia emission occurred within the first 24 h following surface application. The lime application along with compost significantly enhanced the total ammonia emission. Total ammonia emission for 22 days were 40.1, 31.4, and 27.7 kg/ha for immediate incorporation in soil after lime and compost application, lime incorporation in soil following 3 days after compost surface application, and compost incorporation in soil following 3 days after lime surface application, respectively. Therefore, lime and livestock manure compost application at the same time was not recommended for abatement of ammonia emission in upland soil.

Selection of Aquatic Plants Having High Uptake Ability of Pollutants in Raw Sewage Treatment (생활오폐수에 대한 정화력이 높은 수생식물 선발)

  • Kim, Choon-Song;Ko, Jee-Yeon;Lee, Jae-Saeng;Park, Sung-Tae;Ku, Yeon-Chung;Kang, Hang-Won
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.1
    • /
    • pp.25-35
    • /
    • 2007
  • Excess runoff contaminated with N and P can impact the quality of downstream water. It has been known that aquatic plants improve the water quality through their intake of organic or inorganic nutrients. This study was conducted to select aquatic plants having high purification ability for nutrient N and P, and mineral nutrients related to EC such as K, Ca, Na, Cl, and $SO_4$ in raw sewage water in greenhouse. We assessed nutrient phytoremediation potential of alien hydrophyte and hydro-crop as well as native landscape hydrophyte to select suitable aquatic plant applied to artificial wetland and buffering site of stream-side. The amount of irrigation water during whole growing period of aquatic plane ranged from 225 L $m^{-2}$ to 444 L $m^{-2}$. Oryza sativa, Typha orientalis, Zizania latifolia, Aster subulatus, Coix lachryma-jobi var. mayuen, Paspalum disdichum var. indutum which had high biomass consumed the large amount of irrigation water over 350 L $m^{-2}$. As a result of analysis of water purification effect N and P content of shoot biomass, and media soil after experiment, Oryza sativa, Zizania latifolia, Aster subulatus, Coix lachryma-jobi var. mayuen, Paspalum distichum var. indutum showed high purification ability about eutrophication elements such as T-N and T-P. It is presented that Pistia stratiotes, Eichhornia crassipes, and Paspalum distichum var. indutum had excellent purification ability about K, Ca, Na, and Cl. Moreover, Paspalum distichum var. indutum greatly removed $SO_4$ in row sewage water.

Changes in Phytoplankton Communities and Environmental Factors in Saemangeum Artificial Lake, South Korea between 2006 and 2009 (2006년~2009년 새만금호에서 식물플랑크톤 군집과 환경요인의 변화)

  • Choi, Chung Hyun;Jung, Seung Won;Yun, Suk Min;Kim, Sung Hyun;Park, Jong Gyu
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.3
    • /
    • pp.213-224
    • /
    • 2013
  • Between May 2006 and November 2009, we investigated the relationship between fluctuations in environmental factors and phytoplankton communities in Saemangeum Artificial Lake, South Korea. Nutrient concentrations in the lake increased because of the inflow of water from Mankyung and Dongjin Rivers during the summer rainy season; in particular, high concentrations were detected at an inner zone close to the estuaries. During the summer rainy season, salinity at the inner zone reduced more rapidly than that at the other zones, and it was similar to the changes in nutrient concentrations. Variations in phytoplankton communities were caused by fluctuations in environmental factors: the abundance of phytoplankton at the inner zone was higher than that at the other zones. Diatoms were the dominant species in the phytoplankton communities. A small centric diatom, Skeletonema costatum like species, was predominant, with a mean abundance of 19.5% in Saemangeum lake. Because of accelerated eutrophication in the lake, phytoplankton abundance increased continuously and the total number of species present in the community decreased. In particular, some dinoflagellates could intermittently cause red tides during low temperature and salinity conditions (at the inner zone). In 2006~2007, a red tide-forming dinoflagellate, Prorocentrum minimum, was the predominant species, while Heterocapsa triquetra, Karlodinium veneficum, and Heterocapsa rotundata were the newly recorded species in late 2008 to early 2009. Therefore, the dynamics of phytoplankton communities under the perennially eutrophic conditions in Saemangeum lake appear to be primarily affected by changes in water temperature and salinity. In particular, the growth of harmful algae may have been accelerated by the low salinity and temperature conditions during the spring season at the inner zone.

The Assessment of Trophic State and the Importance of Benthic Boundary Layer in the Southern Coast of Korea (한국남부 연안의 영양상태 평가와 저층 경계면의 중요성)

  • 이재성;김기현;김성수;정래홍;박종수;최우정;김귀영;이필용;이영식
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.9 no.4
    • /
    • pp.179-195
    • /
    • 2004
  • The trophic state of the coastal waters of the southern part of Korea was assessed using biogeochemical data obtained from the National Marine Environmental Monitoring Program conducted by the National Fisheries Research and Development Institute for six years. The trophic state of different areas, analyzed by non-metric multi-dimensional scaling (MDS) analysis, could divide the areas into three groups. Masan Bay, with suboxic water masses and/or the highest concentrations of dissolved inorganic nitrogen and phosphorus occurred, was assessed as being in a hypertrophic state. Ulsan Bay, Onsan Bay, Busan and Jinhae Bay, located near strong point sources, were in a eutrophic state. Other areas, including Tongyong, Yosu, Mokpo and Jeju island, were evaluated as being in a mesotrophic state. During 1997 to 2002, the average values of excess nitrogen, which is the difference between the measured dissolved inorganic nitrogen (DIN) and the corrected DIN using the Redfield ratio, were positive at Ulsan, Onsan, and Busan, where there were inflows from polluted rivers. In contrast, those were negative values in Haengam Bay, Gwangyang Bay and nearby Yosu. This suggests that the limiting element for phytoplankton growth differed among sites. The time series data of excess nitrogen showed gradual decrease over time in the hypertrophic waters, but the opposite trend in the mesotrophic waters. This indicated that the ratio of nitrogen to phosphate varied according to the trophic state of the coastal waters. The enrichment of organic matter in sediment in eutrophic waters would disturb the normal pattern of biogeochemical cycling of nitrogen and phosphate. In order to assess the condition of the coastal environment, the benthic boundary layer should be considered.

Marine Algal Flora and Community Structure in Subtidal Zone of Wangdol-Cho on the East Coast of Korea (동해 왕돌초 조하대의 해조상과 군집구조)

  • Kwon, Chun Jung;Choi, Chang Geun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.191-201
    • /
    • 2014
  • Marine algal flora and community structure were investigated seasonally at three sites in subtidal zone of Wangdol-cho on the east coast of Korea from May 2012 to August 2013. A total of 122 species were collected and identified, including 12 green algae, 29 brown algae, and 81 red algae. Of these, 38 species were found throughout the survey period. Average seaweed biomass was 472.19-1,198.77 g wet wt. $m^{-2}$ in spring, 68.99-631.14 g wet wt. $m^{-2}$ in summer, 200.91-401.20 g wet wt. $m^{-2}$ in autumn, and 53.61-922.32 g wet wt. $m^{-2}$ in winter. The vertical distribution based on biomass were Grateloupia lanceolata, Acrosorium venulosum, Lomentaria catenata - Undaria pinnatifida, Dictyopteris pacifica, Sargassum horneri, Ecklonia cava - Desmarestia viridis, E. cava, S. horneri from upper to lower subtidal zone. The flora was classified into six functional groups: filamentous form (34.43%), coarsely branched form (25.41%), sheet form (24.59%), thick leather form (9.71%), crustose form (5.74%) and jointed calcareous form (0.82%). The C/P, R/P and (R+C)/P values reflecting the flora characteristics were 0.41, 2.79 and 3.21, respectively. Also, diversity index (H') and dominance index (DI) indicate that the algal community and environmental condition of Wangdol-cho is stable. We recommend that Wangdol-cho subtidal zone should be more protected from human activities such as turbulence and eutrophication in order to maintain species diversity and abundance of algae.

A Study on Removal of Organism and Nitrogen, Phosphorus in Wastewater Treatment Process Using Nitrifier Activated Reactor (질산화균 활성화조를 이용한 하수처리 공정에서의 유기물 및 질소, 인 제거에 관한 연구)

  • Dong, Young-tak;Seo, Dong-whan;Bae, Yu-jin;Park, Ju-seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.727-735
    • /
    • 2007
  • The use of water by cities is increasing owing to industrialization, the concentration of population, and the enhancement of the standard of living. Accordingly, the amount of waste water is also increasing, and the degree of pollution of the water system is rising. In order to solve this problem, it is necessary to remove organisms and suspended particles as well as the products of eutrophication such as nitrates and phosphates. This study developed a high-end treatment engineering solution with maximum efficiency and lower costs by researching and developing a advanced treatment engineering solution with the use of Biosorption. As a result, the study conducted a test with a $50m^3/day$ Pilot Scale Plant by developing treatment engineering so that only the secondary treatment satisfies the standard of water quality and which provided optimal treatment efficiency along with convenient maintenance and management. The removal of organisms, which has to be pursued first for realizing nitrification during the test period, was made in such a way that there would be no oxidation by microorganisms in the reactor while preparing oxygen as an inhibitor for the growth of microorganism in the course of moving toward the primary settling pond. The study introduced microorganisms in the endogeneous respiration stage to perform adhesion, absorption, and filtering by bringing them into contact with the inflowing water with the use of a sludge returning from the secondary settling pond. Also a test was conducted to determine how effective the microorganisms are as an inner source of carbon. The HRT(Hydraulic Retention Time) in the nitrification tank (aerobic tank) could be reduced to two hours or below, and the stable treatment efficiency of the process using the organisms absorbed in the NAR reactor as a source of carbon could be proven. Also, given that the anaerobic condition of the pre-treatment tank becomes basic in the area of phosphate discharge, it was found that there was excellent efficiency for the removal of phosphate when the pre-treatment tank induced the discharge of phosphate and the polishing reactor induced the uptake of phosphate. The removal efficiency was shown to be about 94.4% for $BOD_5$. 90.7% for $COD_{Cr}$ 84.3% for $COD_{Mn}$, 96.0% for SS, 77.3% for TN, and 96.0% for TP.

Phosphorus Removal in Wastewater Using Activated Ca-Loess Complex

  • Kang, Seong Chul;Lee, Byoung Ho
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.5
    • /
    • pp.713-721
    • /
    • 2012
  • In many instances phosphorus is a limiting factor for eutrophication in streams, and lakes. Because wastewater treatment plant itself may be the main phosphorus source in a natural water body, removal of phosphorus in final effluent of wastewater treatment processes is required. Amongst various technologies for phosphorus removal in wastewater, adsorption technology was investigated using activated Ca-loess complex. Ca was added in loess to enhance adsorption capacity and intensity of phosphorus. Ca added loess was activated at a high temperature of $400^{\circ}C$ which turned out to be the optimum temperature. Activated Ca-loess complex below $400^{\circ}C$ had not enough strength to be applied as an activated Ca-loess pallet column in wastewater treatment process. Ca-loess complex which activated above $400^{\circ}C$ lost its adsorption capacity as the loess surface was glassified when the activation temperature reached above $400^{\circ}C$20. Even if adsorption capacity of activated Ca-loess was not very high due to the lack of abundant pores on its surface, adsorption intensity was still high because it was activated with added Ca in loess. Activated loess was made by pallets. The activated loess pallets were filled in a column, and were applied in wastewater treatment process. Using an activated Ca-loess pallet column, total phosphorus (T-P) was reduced from about 0.5 mg/l to lower than 0.1 mg/l in wastewater treatment, and ionic phosphorus (phosphate) was completely removed for the four months of pilot plant operation.

Environmental impact evaluation and improvement measure of incineration plant by life cycle assessment (전과정평가를 이용한 소각시설의 환경영향평가 및 개선방안)

  • Kim, Hyeong-Woo;Kim, Kyeong-Ho;Park, Hung-Suck
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.21 no.4
    • /
    • pp.88-100
    • /
    • 2013
  • This study evaluated the direct and indirect environmental impacts of various unit operations of a industrial waste incineration plant by using the life cycle assessment tool and reviewed the improvement plan. During the incineration process, the direct environmental impact was decreased with decrease in emission of various air pollutants by incorporating an air pollution prevention facilities. However, an increase in indirect environmental impacts was observed as a consequence of resources and energy of consumption at the various operational facilities. Consequently, quantitative direct and indirect impact were 89.1%, 10.9%, respectively. The environmental impact analysis of system revealed the highest impact of incineration followed by the impacts of other unit processes such as semidry reactor, and bag-filter. The various air pollutants and ashes generated during the incineration process caused the most significant environmental impact. Among the various categories of environmental impact, global warming accounted the highest impact(more than 85%) followed by eutrophication, and abiotic depletion. As a result of the avoided impact by the utilization of heat generated during the waste incineration process, using an incineration heat for steam and electricity obtained the impact reduction of 45.5%, 19.8%. So, during siting of new incineration plant, the utilization of steam generated from the waste combustion is highly considered to reduce the environmental impact.

Environmental Impacts Assessment of Elementary School Buildings and Establishment of the Reference Target using Life Cycle Assessment Model (전과정평가 모델을 이용한 초등학교 건축물 환경영향 평가 및 비교기준 수립)

  • Ji, Changyoon;Hong, Taehoon;Jeong, Jaewook
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.3
    • /
    • pp.49-58
    • /
    • 2015
  • In order to determine how much a new green building reduce the environmental impacts, it is necessary to establish the reference target for comparison. Therefore, this study aims to establish the reference target by evaluating the environmental impacts of existing buildings. To ensure this end, this study evaluated the environmental impacts(Global warming potential, ozone layer depletion potential, acidification potential, eutrophication potential, photochemical ozone creation potential, and abiotic depletion potential) of 17 existing elementary school buildings, which are located in Seoul, Busan, Daegu, and Gwangju, by using the hybrid LCA model. As a result, the environmental impacts of the case buildings were clearly distinguished in different regions. Therefore, this study presented the reference targets which are appropriate to each region. For example, the reference targets for global warming potential, which can be used in Seoul, Busan, Daegu, and Gwangju, are 3.76E+03, 1.90E+03, 2.63E+03, $2.81E+03kg-CO_2\;eq./m^2$, respectively. The presented reference targets are expected to be useful for understanding how much environmental impacts can be reduced when a new green school building is constructed.