• Title/Summary/Keyword: EU Transfer

Search Result 119, Processing Time 0.034 seconds

Synthesis, Film Fabrication, and Optical Properties of Polymers Containing Metal Cation Complex Type D-$\pi$-A Chromophore (금속 양이온 배위형 D-$\pi$-A 발색단을 포함하는 폴리머의 합성 및 박막화와 광학특성)

  • Jeong, Seon-Ju;Kim, Hye-Ryun;Yoon, Keun-Byoung;Han, Yoon-Soo;Fujiki, Michiya;Takagi, Akiko;Kwak, Gi-Seop
    • Polymer(Korea)
    • /
    • v.34 no.4
    • /
    • pp.376-380
    • /
    • 2010
  • Donor-$\pi$-acceptor (D-$\pi$-A) type chromophore-based polymers were newly synthesized. These polymers exhibited absorption peak due to intramolecular charge transfer (ICT) in a visible range as well as absorption peak due to carbonyl group in both solution and film state by measuring UV visible spectra. The addition of $Eu^{3+}$ ion into the polymers induced red-shift in absorption due to ICT and the color changes from yellow to red in the solution and film were observed by naked eyes. The contents of crosslinking agent influenced the features and solubility of the polymers. In addition, the contents of crosslinking agent and the $Eu^{3+}$ ion addition improved film-forming ability.

Effects of deposition temperature on the properties of SnO2:Eu3+ thin films grown by radio-frequency magnetron sputtering (증착 온도가 라디오파 마그네트론 스퍼터링으로 성장한 SnO2:Eu3+ 박막의 특성에 미치는 영향)

  • Shinho Cho
    • Journal of Surface Science and Engineering
    • /
    • v.56 no.3
    • /
    • pp.201-207
    • /
    • 2023
  • Eu3+-doped SnO2 (SnO2:Eu3+) phosphor thin films were grown on quartz substrates by radio-frequency magnetron sputtering. The deposition temperature was varied from 100 to 400 ℃. The X-ray diffraction patterns showed that all the thin films had two mixed phases of SnO2 and Eu2Sn2O7. The 880 nmthick SnO2:Eu3+ thin film grown at 100 ℃ exhibited numerous pebble-shaped particles. The excitation spectra of SnO2:Eu3+ thin films consisted of a strong and broad peak at 312 nm in the vicinity from 250 to 350 nm owing to the O2--Eu3+ charge transfer band, irrespective of deposition temperature. Upon 312 nm excitation, the SnO2:Eu3+ thin films showed a main emission peak at 592 nm arising from the 5D07F1 transition and a weak 615 nm red band originating from the 5D07F2 transition of Eu3+. As the deposition temperature increased, the emission intensities of two bands increased rapidly, approached a maximum at 100 ℃, and then decreased slowly at 400 ℃. The thin film deposited at 200 ℃ exhibited a band gap energy of 3.81 eV and an average transmittance of 73.7% in the wavelength range of 500-1100 nm. These results indicate that the luminescent intensity of SnO2:Eu3+ thin films can be controlled by changing the deposition temperature.

Luminescence properties of Eu- and Mn-activated $BaMgP_2O_7$ as a potential red phosphor for white emission

  • Kim, Yong-Kwang;Choi, Sung-Ho;Jung, Ha-Kyun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.581-584
    • /
    • 2008
  • $BaMgP_2O_7$:Eu,Mn phosphors for white emission were synthesized and their luminescent properties were investigated under UV excitation. The phosphor emits two colors: a blue band by $Eu^{2+}$ and a red band by $Mn^{2+}$. Due to the efficient energy transfer from $Eu^{2+}$ to $Mn^{2+}$, the red emission positioned at 615 nm is greatly enhanced with increasing $Mn^{2+}$ content up to 17.5 mol%.

  • PDF

New Red Phosphor with the Improved Color Purity for PDP Applications

  • Mho, Sun-Il
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.257-259
    • /
    • 2002
  • As a new host material for a red phosphor for PDP applications, has studied (Y,Gd)$Al_3(BO_3)_4$ which gives non-centrosymmetric sites for $Eu^{3+}$ activators. Vacuum ultraviolet (VUV) excitation spectrum of new red phosphor (Y,Gd)$Al_3(BO_3)_4$:$Eu^{3+}$ has two broad bands. One band with the absorption edge at ca. 168 nm is the band-gap absorption of aluminoborate and the other broad band centered 240 nm is the charge transfer transition between $Eu^{3+}$ and the neighboring oxygen anions. The PL spectrum shows the strongest emission at 617 nm due to the electric dipole $^5D_0{\rightarrow}^7F_2$ transition of $Eu^{3+}$, whose luminescent chromaticity is (0.67, 0.33).

  • PDF

Luminescence Properties of $Y_2SiO_5:Eu^{3+}$ as Red-Emitting Phosphor for White Light Emitting Diodes

  • Song, Y.H.;Park, W.J.;Yoon, D.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1303-1304
    • /
    • 2009
  • In order to apply to the White light emitting diodes (WLEDs), The $Y_2SiO_5:Eu^{3+}$ as red phosphor was synthesized by solid state reaction method. The highest emission of $Y_2SiO_5:Eu^{3+}$ was shown when the $Eu^{3+}$ concentration was 0.02. A single phase was observed from X-ray diffraction (XRD) analysis of synthesized samples and secondary phase wasn't found.

  • PDF

Electrochemical and Spectrofluorometric Behaviors of Eu(III) Complexes in Aqueous Solution

  • Chae Won-Seok;Kim Kang-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.12
    • /
    • pp.1050-1054
    • /
    • 1994
  • Eu(Ⅲ) exhibits one electron-transfer reduction at E$_{1/2}$ =-0.617 V vs. Ag/AgCl and the hypersensitive peak at 618 nm corresponding to $^5D_0$ ${\leftrightarro}$ $^7F_2$ transition in 0.10 M LiClO$_4$ aqueous solutions. Upon the addition of carboxylate or sulfonate anions to the Eu(Ⅲ) aqueous solutions, the reduction potential shifts negatively and the reduction current decreases because of the complex formation between Eu(Ⅲ) ions and the anions. However, for the case of carboxylate anion (acetate or propionate) the shift of reduction peak potential and the emission intensity at 618 nm are greater. The results are interpreted in terms of the differences in the formation constants and the hypersensitivity.

Preparation and Luminescence of Europium-doped Yttrium Oxide Thin Films

  • Chung, Myun Hwa;Kim, Joo Han
    • Applied Science and Convergence Technology
    • /
    • v.26 no.2
    • /
    • pp.26-29
    • /
    • 2017
  • Thin films of europium-doped yttrium oxide ($Y_2O_3$:Eu) were prepared on Si (100) substrates by using a radio frequency (RF) magnetron sputtering. After the deposition, the films were annealed at $1000^{\circ}C$ in an air ambient for 1 hour. X-ray diffraction analysis revealed that the $Y_2O_3$:Eu films had a polycrystalline cubic ${\alpha}-Y_2O_3$ structure. The as-deposited films showed no photoluminescence (PL), which was due to poor crystalline quality of the films. The crystallinity of the $Y_2O_3$:Eu films was significantly improved by annealing. The strong red PL emission was observed from the annealed $Y_2O_3$:Eu films and the highest intensity peak was centered at around 613 nm. This emission peak originated from the $^5D_0{\rightarrow}^7F_2$ transition of the trivalent Eu ions occupying the $C_2$ sites in the cubic ${\alpha}-Y_2O_3$ lattice. The broad PL excitation band was observed at wavelengths below 280 nm, which was attributed to the charge transfer transition of the trivalent Eu ion.

Radiation Resistance of BGO:Eu Scintillator (BGO:Eu 섬광체의 방사선 저항)

  • Kim, Jong-Il;Jeong, Jung-Hyun;Doh, Sih-Hong;Hwang, Hae-Sun;Kim, Sung-Chuel;Kim, Jung-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.6 no.1
    • /
    • pp.16-23
    • /
    • 1997
  • Bismuth germanate crystals well known as scintillator were grown by Czochralski method. In order to understand a mechanism of radiation resistance in Eu-doped BGO, we measured radiation induced-absorption spectra, excitation spectra, emission spectra and luminescence lifetimes of BGO crystals. We found that the charge transfer state of $Eu^{3+}$ ion is to play a key role to enhance the radiation resistance in BGO crystal. The $^{5}D_{0}$ emission of $Eu^{3+}$ ions that is not suitable for the radiation detectors due to a long decay time was found to be increased with increasing europium concentration. In the BGO crystal doped with 0.1 mole%, the density of radiation induced color centers was reduced about twenty times and the light output of $^{5}D_{0}$ was negligible by comparing to that of BGO.

  • PDF

Preparation of Ba2Mg(PO4)2:Eu Phosphors and Their Photoluminescence Properties Under UV Excitation (Ba2Mg(PO4)2:Eu 형광체의 합성과 자외선 여기하의 발광특성)

  • Tae, Se-Won;Jung, Ha-Kyun;Choi, Sung-Ho;Hur, Nam-Hwi
    • Korean Journal of Materials Research
    • /
    • v.18 no.11
    • /
    • pp.623-627
    • /
    • 2008
  • For possible applications as luminescent materials for white-light emission using UV-LEDs, $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphors were prepared by a solid state reaction. The photoluminescence properties of the phosphor were investigated under ultraviolet ray (UV) excitation. The prepared phosphor powders were characterized to from a single phase of a monoclinic crystalline structure by a powder X-ray diffraction analysis. In the photoluminescence spectra, the $Ba_2Mg(PO_4)_2:Eu^{2+}$ phosphor showed an intense emission band centered at the 584 nm wavelength due to the f-d transition of the $Eu^{2+}$ activator. The optimum concentration of $Eu^{2+}$ activator in the $Ba_2Mg(PO_4)_2$ host, indicating the maximum emission intensity under the excitation of a 395 nm wavelength, was 5 at%. In addition, it was confirmed that the $Eu^{2+}$ ions are substituted at both $Ba^{2+}$ sites in the $Ba_2Mg(PO_4)_2$ crystal. On the other hand, the critical distance of energy transfer between $Eu^{2+}$ ions in the $Ba_2Mg(PO_4)_2$ host was evaluated to be approximately 19.3 A. With increasing temperature, the emission intensity of the $Ba_2Mg(PO_4)_2$:Eu phosphor was considerably decreased and the central wavelength of the emission peak was shifted toward a short wavelength.