• Title/Summary/Keyword: ETF Trading

Search Result 6, Processing Time 0.019 seconds

Predicting The Direction of The Daily KOSPI Movement Using Neural Networks For ETF Trades (신경회로망을 이용한 일별 KOSPI 이동 방향 예측에 의한 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2019
  • Neural networks have been used to predict the direction of stock index movement from past data. The conventional research that predicts the upward or downward movement of the stock index predicts a rise or fall even with small changes in the index. It is highly likely that losses will occur when trading ETFs by use of the prediction. In this paper, a neural network model that predicts the movement direction of the daily KOrea composite Stock Price Index (KOSPI) to reduce ETF trading losses and earn more than a certain amount per trading is presented. The proposed model has outputs that represent rising (change rate in index ${\geq}{\alpha}$), falling (change rate ${\leq}-{\alpha}$) and neutral ($-{\alpha}$ change rate < ${\alpha}$). If the forecast is rising, buy the Leveraged Exchange Traded Fund (ETF); if it is falling, buy the inverse ETF. The hit ratio (HR) of PNN1 implemented in this paper is 0.720 and 0.616 in the learning and the evaluation respectively. ETF trading yields a yield of 8.386 to 16.324 %. The proposed models show the better ETF trading success rate and yield than the neural network models predicting KOSPI.

Hybrid Machine Learning Model for Predicting the Direction of KOSPI Securities (코스피 방향 예측을 위한 하이브리드 머신러닝 모델)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.6
    • /
    • pp.9-16
    • /
    • 2021
  • In the past, there have been various studies on predicting the stock market by machine learning techniques using stock price data and financial big data. As stock index ETFs that can be traded through HTS and MTS are created, research on predicting stock indices has recently attracted attention. In this paper, machine learning models for KOSPI's up and down predictions are implemented separately. These models are optimized through a grid search of their control parameters. In addition, a hybrid machine learning model that combines individual models is proposed to improve the precision and increase the ETF trading return. The performance of the predictiion models is evaluated by the accuracy and the precision that determines the ETF trading return. The accuracy and precision of the hybrid up prediction model are 72.1 % and 63.8 %, and those of the down prediction model are 79.8% and 64.3%. The precision of the hybrid down prediction model is improved by at least 14.3 % and at most 20.5 %. The hybrid up and down prediction models show an ETF trading return of 10.49%, and 25.91%, respectively. Trading inverse×2 and leverage ETF can increase the return by 1.5 to 2 times. Further research on a down prediction machine learning model is expected to increase the rate of return.

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

A Study on the Investment Efficiency of Korean ETFs (한국상장지수펀드(ETF)의 투자효율성에 관한 연구)

  • Jung, Hee-Seog
    • Journal of Digital Convergence
    • /
    • v.16 no.5
    • /
    • pp.185-197
    • /
    • 2018
  • The purpose of this study is to analyze the Korean ETF market, which is experiencing a rapid increase in the number of stocks, to identify the degree of investment efficiency and to present investment directions. The methodology and procedure are ETF yield, change trends, correlation and regression analysis of the ETFs traded between 2010 and 2018. As a result, the total return of domestic ETFs was 3.51%, which was lower than the KOSPI growth rate and the return on equity ETFs was 4.03%, which was low. Leverage ETF yields were below 3%, which was low. The return on bond and currency ETFs was less than 1%. The most profitable ETFs were index ETFs, followed by domestic and leveraged ETFs. This study has contributed to establishing considerations when purchasing ETFs from the viewpoint of investors. Future research will present the direction of ETF investment more precisely.

The Short-Term Fear Effects for Taiwan's Equity Market from Bad News Concerning Sino-U.S. Trade Friction

  • YANG, Shu Ya;LIN, Hsiu Hsu;LIU, Ying Sing
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.3
    • /
    • pp.127-137
    • /
    • 2021
  • Mainland China area has been a long-term, major trade rival and partner of Taiwan, accounting for more than 40% of Taiwan's total annual trade exports, and so Sino-US trade friction is expected to have a significant impact on Taiwan's economy in the future. This study focuses on major bad news of Sino-US trade frictions and how it generates short-term shocks for Taiwan's equity market and fear sentiment. It further explores the mutual interpretation relationship between price changes such as VIX, Taiwan's stock market index, and the VIX ETF to identify which factors have information leadership as leading indicators. The study period covers 750 trading days from 2017/1/3 to 2020/1/31. This study finds that, when a policy news is announced, the stock market index falls significantly, the change in the trading price (net value) of the VIX ETF rises significantly, and the overprice rate significantly drops, but VIX does not, showing that fear sentiment exists in the Taiwan's market. The net value of the VIX ETF shows an information advantage as a leading indicator. This study suggests that, when the world's two largest economies clash over trade, the impact on Taiwan's equity market is inevitable, and that short-term fear effects will arise.

Big Data Analysis of Financial Product Transaction Trends Using Associated Analysis (연관분석을 이용한 금융 상품 거래 동향의 빅데이터 분석)

  • Ryu, Jae Pil;Shin, Hyun-Joon
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.49-57
    • /
    • 2021
  • With the advent of the era of the fourth industry, more and more scientific techniques are being used to solve decision-making problems. In particular, big data analysis technology is developing as it becomes easier to collect numerical data. Therefore, in this study, in order to overcome the limitations of qualitatively analyzing investment trends, the association of various products was analyzed using associated analysis techniques. For the experiment, two experimental periods were divided based on the COVID-19 economic crisis, and sales information from individuals, institutions, and foreign investors was collected, and related analysis algorithms were implemented through r software. As a result of the experiment, institutions and foreigners recently invested in the KOSPI and KOSDAQ markets and bought futures and products such as ETF. Individuals purchased ETN and ETF products together, which is presumed to be the result of the recent great interest in sector investment. In addition, after COVID-19, all investors tended to be passive in investing in high-risk products of futures and options. This paper is thought to be a useful reference for product sales and product design in the financial field.