• Title/Summary/Keyword: ESS optimal operation

Search Result 42, Processing Time 0.029 seconds

Development of Hybrid BMS(Battery Management System) Algorithm for Lead-acid and Lithium-ion battery (연축전지와 리튬이온전지용 하이브리드 BMS 알고리즘 개발)

  • Oh, Seung-Taek;Kim, Byung-Ki;Park, Jae-Beom;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.5
    • /
    • pp.3391-3398
    • /
    • 2015
  • Recently, the large scaled lead-acid battery is widely introduced to efficient operation of the photovoltaic system in many islands. but the demand of lithium-ion battery is getting increased by the operation of wind power and replacement of the lead-acid battery. And also, under the renewable portfolio standard(RPS) and energy efficiency resource standard(EERS) policy of Korea government, the introduction of energy storage system(ESS) has been actively increased. Therefore, this paper presents the operation algorithm of hybrid battery management system(BMS) using the lead-acid and lithium-ion batteries, in order to maximize advantage of each battery. In other words, this paper proposed the algorithm of state of charge(SOC) and hybrid operation algorithm to calculate the optimal composition rate considering the fixed cost and operation cost of each battery. From the simulation results, it is confirmed that the proposed algorithms are an effective tool to evaluate SOC and to optimally operate hybrid ESS.

An Analysis of Optimal Operation Strategy of ESS to Minimize Electricity Charge Using Octave (Octave를 이용한 전기 요금 최소화를 위한 ESS 운전 전략 최적화 방법에 대한 분석)

  • Gong, Eun Kyoung;Sohn, Jin-Man
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.4
    • /
    • pp.85-92
    • /
    • 2018
  • Reductions of the electricity charge are achieved by demand management of the load. The demand management method of the load using ESS involves peak shifting, which shifts from a high demand time to low demand time. By shifting the load, the peak load can be lowered and the energy charge can be saved. Electricity charges consist of the energy charge and the basic charge per contracted capacity. The energy charge and peak load are minimized by Linear Programming (LP) and Quadratic Programming (QP), respectively. On the other hand, each optimization method has its advantages and disadvantages. First, the LP cannot separate the efficiency of the ESS. To solve these problems, the charge and discharge efficiency of the ESS was separated by Mixed Integer Linear Programming (MILP). Nevertheless, both methods have the disadvantages that they must assume the reduction ratio of peak load. Therefore, QP was used to solve this problem. The next step was to optimize the formula combination of QP and LP to minimize the electricity charge. On the other hand, these two methods have disadvantages in that the charge and discharge efficiency of the ESS cannot be separated. This paper proposes an optimization method according to the situation by analyzing quantitatively the advantages and disadvantages of each optimization method.

Optimal Operation Method and Capacity of Energy Storage System(ESS) in Primary Feeders with Step Voltage Regulator(SVR) (선로전압조정장치(SVR)가 설치된 고압배전선로에서 전기저장장치(ESS)의 최적운용 및 적정용량 산정방안)

  • Kim, Byungki;Ryu, Kyung-Sang;Kim, Dae-Jin;Jang, Moon-seok;Ko, Hee-sang;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.6
    • /
    • pp.9-20
    • /
    • 2018
  • When a large-scale photovoltaic (PV) system is introduced into a distribution system, the customer's voltage may exceed the allowable limit ($220V{\pm}6%$) due to voltage variations and reverse power flow in the PV system. In order to solve this problem, we propose a method for adjusting the customer voltage using the existing step voltage regulator (SVR) installed in the primary feeder. However, due to the characteristics of a mechanically operating SVR, the customer voltage during the tap changing time of the SVR is likely to deviate from the allowable limit. In this paper, an energy storage system (ESS) with optimal operation strategies, and an appropriate capacity calculation algorithm are proposed, and the parallel driving scheme between the SVR and the ESS is also proposed to solve the customer voltage problem that may occur during the tap changing time of the SVR. The simulation results show that the allowable limit of the customer voltage is verified by the proposed methods during the tap changing time of the SVR when the large-scale PV system is connected to the distribution system.

A Study on Power Trading Methods for in a Hydrogen Residential Model (수소주거모델의 전력 거래 참여 방안 고찰)

  • KISEOK JEONG;TAEYOUNG JYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.2
    • /
    • pp.91-99
    • /
    • 2023
  • Participation in power trading using surplus power is considered a business model active in the domestic energy trade market, but it is limited only if the legal requirements according to the type, capacity, and use of the facilities to be applied for are satisfied. The hydrogen residential demonstration model presented in this paper includes solar power, energy storage system (ESS), fuel cell, and water electrolysis facilities in electrical facilities for private use with low-voltage power receiving system. The concept of operations strategy for this model focuses on securing the energy self-sufficiency ratio of the entire system, securing economic feasibility through the optimal operation module installed in the energy management system (EMS), and securing the stability of the internal power balancing issue during the stand-alone mode. An electric facility configuration method of a hydrogen residential complex demonstrated to achieve this operational goal has a structure in which individual energy sources are electrically connected to the main bus, and ESS is also directly connected to the main bus instead of a renewable connection type to perform charging/discharging operation for energy balancing management in the complex. If surplus power exists after scheduling, participation in power trading through reverse transmission parallel operation can be considered to solve the energy balancing problem and ensure profitability. Consequentially, this paper reviews the legal regulations on participation in electric power trading using surplus power from hydrogen residential models that can produce and consume power, gas, and thermal energy including hybrid distributed power sources, and suggests action plans.

A Study on System Retrofit of Complex Energy System (복합에너지시스템의 성능개선에 관한 연구)

  • Choi, Jung-Hun;Moon, Chae-Joo;Chang, Young-Hak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.61-68
    • /
    • 2021
  • The application of renewable energies such as wind and solar has become an inevitable choice for many countries in order to achieve the reduction of greenhouse gases and healthy economic development. However, due to the intermittent characteristics of renewable energy, the issue with integrating a larger proportion of renewable energy into the grid becomes more prominent. A complex energy system, usually consists of two or more renewable energy sources used together to provide increased system efficiency as well as greater balance in energy supply. Compared with the power system, control and optimization of the complex energy system become more difficult in terms of modeling, operation, and planning. The main purpose of the complex energy system retrofit for samado island with microgrid system is to coordinate the operation with various distributed energy resources, energy storage systems, and power grids to ensure its reliability, while reducing the operating costs and achieving the optimal economic benefits. This paper suggests the improved complex energy system of samado island with optimal microgrid system. The results of test operation show about 12% lower SOC variation band of ESS, elimination of operation limit in PV and reduction of operation time in diesel generator.

Economy Analysis and Optimized Capacity Evaluation of Photovoltaic-Related Energy Storage System (태양광 에너지저장장치(ESS) 경제성 분석 및 최적 용량 평가)

  • Lee, Young-Hun;Sung, Tae-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.2_2
    • /
    • pp.209-218
    • /
    • 2022
  • The purpose of this study is to analyze an economic assessment of PV-ESS systems based on the power generation performance data of solar power (PV) operating in domestic area, and to calculate the optimal capacity of the energy storage system. In this study, PVs in Gyeonggi-do, Jeollabuk-do, and Gyeongsangbuk-do were targeted, and PVs in this area were assumed to be installed on a general site, and the research was conducted by applying weights based on the facility's capacity. All the analysis was conducted using the actual amount of KPX transactions of PVs in 2019. In order to calculate the optimal capacity of PCS and BESS according to GHI, PV with a minimum/maximum/central value was selected by comparing the solar radiation before the horizontal plane between three years (2017-2019) of the location where PV was installed. As a result of the analysis, in Gyeonggi-do, if the REC weight decreases to 3.4 when there is no change in the cost of installing BESS and PCS, it is more economical to link BESS than PV alone operation of PV. In Jeollabuk-do, it was analyzed that if the REC weight was reduced to 3.6, it was more likely to link BESS than PV operated alone. In Gyeongsangbuk-do, it was analyzed that if the REC weight was reduced to 3.4, it was more likely to link BESS than PV operated alone.

Hierarchical Control Scheme for Three-Port Multidirectional DC-DC Converters in Bipolar DC Microgrids

  • Ahmadi, Taha;Hamzeh, Mohsen;Rokrok, Esmaeel
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1595-1607
    • /
    • 2018
  • In this paper, a hierarchical control strategy is introduced to control a new three-port multidirectional DC-DC converter for integrating an energy storage system (ESS) to a bipolar DC microgrid (BPDCMG). The proposed converter provides a voltage-balancing function for the BPDCMG and adjusts the states of charge (SoC) of the ESS. Previous studies tend to balance the voltage of the BPDCMG buses with active sources or by transferring power from one bus to another. Furthermore, the batteries available in BPDCMGs were charged equally by both buses. However, this power sharing method does not guarantee efficient operation of the whole system. In order to achieve a higher efficiency and lower energy losses, a triple-layer hierarchical control strategy, including a primary droop controller, a secondary voltage restoration controller and a tertiary optimization controller are proposed. Thanks to the multi-functional operation of the proposed converter, its conversion stages are reduced. Furthermore, the efficiency and weight of the system are both improved. Therefore, this converter has a significant capability to be used in portable BPDCMGs such as electric DC ships. The converter modes are analyzed and small-signal models of the converter are extracted. Comprehensive simulation studies are carried out and a BPDCMG laboratory setup is implemented in order to validate the effectiveness of the proposed converter and its hierarchical control strategy. Simulation and experimental results show that using the proposed converter mitigates voltage imbalances. As a result, the system efficiency is improved by using the hierarchical optimal power flow control.

A Study on the Optimal Operation of Photovoltaic Charging System (태양광 발전 배터리 충전 시스템 최적 동작에 관한 연구)

  • Yoo, Kyu-Hyeon;Lee, Woo-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.183-185
    • /
    • 2018
  • 최근 석유나 석탄 에너지 사용으로 인한 대기오염 및 미세먼지와 원자력 발전으로 인한 핵 폐기 물질 처리의 어려움, 방사능 오염이 발생하는 문제가 심각해짐에 따라 신재생에너지의 중요성이 대두되고 있다. 이로 인해 정부에서도 신재생에너지의 비중을 확대하기 위한 정책들이 시행되고 있는데 그 중 태양광 발전 시스템이 가장 크게 주목받고 있다. 태양광 발전이 성장함에 따라 다양한 연구가 진행되어왔으며 이 중 DC-DC 컨버터로 구성된 태양광 발전 energy storage system (ESS) 시스템이 효율이 높고 시장성이 좋아 많은 연구가 진행되고 있다. 따라서 본 논문에서는 5kW 태양광 발전 배터리 충전 시스템을 구성하여 컨버터의 동작 및 특성에 대하여 분석하고 이를 시뮬레이션을 통해 내용을 검증하였다.

  • PDF

Algorithm Calculating Optimal DG Capacity Considering Operating Deficit in Hybrid Internal Combustion Generation (하이브리드 내연발전에서 도서 운영 결손액을 고려한 분산전원 최적 용량 산정 알고리즘)

  • Son, Joon-Ho;Kim, Mi-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.655-660
    • /
    • 2018
  • Internal combustion generation (ICG) is used to supply power to islands due to geographical characteristics, but there are some problems, such as considerable operating cost, salt pollution, and environmental pollution. For these islands, KEPCO pays a significant amount of operating deficit each year, especially for the fuel and servicing costs, which account for a large portion of this deficit. Integrated ICG (IICG) through an offshore cable between near islands is being considered to decrease servicing costs. Distributed generation (DG) is also being introduced on the islands because of the demand for a low-carbon society. In hybrid internal combustion generation (HICG), DG is introduced into IICG, which can be applied because the DG output is insufficient due to environmental characteristics, and the IICG is used as an auxiliary power source. Therefore, this paper proposes an algorithm to estimate the optimal DG capacity that can be introduced in accordance with the KEPCO operating deficit in the HICG. According to simulations, the optimal DG capacity depends on the fuel cost and load capacity. The validity of the proposed algorithm was confirmed for multiple islands with different peak loads.

Optimization Process Models of CHP and Renewable Energy Hybrid Systems in CES (구역전기 사업시 CHP와 신재생에너지 하이브리드 시스템의 최적공정 모델)

  • Lee, Seung Jun;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.26 no.2
    • /
    • pp.99-120
    • /
    • 2017
  • In SS branch of Korea District Heating Corporation, Combined Heat & Power power plant with 99MW capacity and 98Gcal / h capacity is operated as a district electricity business. In this region, it is difficult to operate the generator due to the problem of surplus heat treatment between June and September due to the economic recession and the decrease in demand, so it is urgent to develop an economical energy new business model. In this study, we will develop an optimized operation model by introducing a renewable energy hybrid system based on actual operation data of this site. In particular, among renewable energy sources, fuel cell (Fuel Cell) power generation which can generate heat and electricity at the same time with limited location constraints, photovoltaic power generation which is representative renewable energy, ESS (Energy Storage System). HOMER (Hybrid Optimization of Multiple Energy Resources) program was used to select the optimal model. As a result of the economic analysis, 99MW CHP combined cycle power generation is the most economical in terms of net present cost (NPC), but 99MW CHP in terms of carbon emission trading and renewable energy certificate And 5MW fuel cells, and 521kW of solar power to supply electricity and heat than the supply of electricity and heat by 99MW CHP cogeneration power, it was shown that it is economically up to 247.5 billion won. we confirmed the results of the improvement of the zone electricity business condition by introducing the fuel cell and the renewable energy hybrid system as the optimization process model.