• 제목/요약/키워드: ESPI System

검색결과 80건 처리시간 0.024초

ESPI에서 AO변조기를 사용한 진동모드 정량화에 관한 연구 (A study on the Quantification of vibration mode by ESPI using A.O Modulator)

  • 박낙규;유원재;안중근;강영준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2001
  • Recently, the study on the vibration analysis of machinery is greatly important and ESPI is widely used because of its many attractive features. Firstly, ESPI can be used to measure the vibration mode shape and the phase in real-time. Secondly, the conventional measuring methode, such as accelerometers, take much time to measure the whole field of object, but ESPI needs shorter time than other methods. Because ESPI is a field-inspection method. Thirdly, ESPI is a non-contact measuring system. ESPI does not have influence on the specimen. Beyond these features, there are several advantages in ESPI system. In this paper, the Stroboscopic ESPI system is described for measurement of a vibration mode shape. The Stroboscopic ESPI system had been used to visualize the vibration mode shape, in which EO(Electro-Optic)modulator was used to chop CW(Continuous Wavefront)laser. But it was not easy to control EO modulator and quantified the vibration amplitude and the phase of circular metal plate. At first, we found resonant frequency of the specimen by using time-averaged ESPI method. Nextly, the amplitudes of specimen were quantified by using Stroboscopic ESPI and we compare the results which were obtained in several chopping ratio.

  • PDF

마이크로 ESPI기법을 이용한 동 박막의 인장 특성 측정 (Measurement of Tensile Properties of Copper Foil using Micro-ESPI Technique)

  • 김동일;허용학;기창두
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.89-96
    • /
    • 2004
  • Micro-tensile testing system, consisting of a micro tensile loading system and micro-ESPI(Electronic Speckle Pattern Interferometry) system, has been developed for measurement of micro-tensile properties of thin micro-materials. Micro-tensile loading system had a load cell with the maximum capacity of 50N and micro actuator with resolution of 4.5nm in stroke. The system was used to apply a tensile load to the micro-sized specimen. During tensile loading, the micro-ESPI system acquired interferornetric speckle patterns in the deformed specimen and measured the in-plane tensile strain. The ESPI system consisted of a CCD-camera with a lens and the window-based program developed for this experiment. Using this system, stress-strain curves for 4 kinds of electrolytic copper foil 18$\square$m thick were obtained. From these curves, tensile properties, including the elastic modulus. yielding strength and tensile strength, were determined and also values of the plastic exponent and coefficient based on Ramberg-Osgood relationship were evaluated.

ESPI를 이용한 복합재료 구조물의 결함 검출 (Detection of Defects in Composite Structures by using ESPI)

  • 김경석;정성균;강진식;장호섭
    • 비파괴검사학회지
    • /
    • 제21권3호
    • /
    • pp.299-306
    • /
    • 2001
  • 본 논문에서는 ESPI 시스템을 이용하여 복합재료 구조물의 인위, 자연 결함을 검출하였다. 복합재료 구조물에서의 ESPI의 적용성을 알아보기 위해 복합재료 적층판 시험편, 하니컴 구조물 시험편, 접착조인트 시험편을 사용하였다. 결함을 검출하기 위해 시편의 표변변형을 쉽게 발생시킬 수 있는 열하중법을 선택하였다. 실험결과는 ESPI를 이용하여 복합재료 구조물의 결함을 쉽게 검출말 수 있고, 다른 여러 복합재료 구조물의 결함의 걸출에도 적용할 수 있을 확인하였다.

  • PDF

3D-ESPI System을 이용한 응력집중부의 변형률 측정기법 연구 (The Research of the Strain Measuement Method on the Stress Concentration Area using 3D-ESPI System)

  • 김경수;심천식;전종욱;김덕호
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.150-153
    • /
    • 2001
  • In this paper, the tensile test of three kinds of the specimens was performed. Type I specimen is without notch and type II, III specimens have a radius of semi-circular edge crack of 2.5mm, 4.0mm. The tensile load(20kN and 30kN) was applied to the specimen by Universal Testing Machine. 3D-ESPI system and strain gauge measured simultaneously the strain in the center of the specimen and near the edge crack. The test results were compared with each other. Moreover, the stress concentration factor based on geometric information was calculated to confirm the accuracy of the strain measured by 3D-ESPI system. The calculated strain was compared with the measured one by 3D-ESPI system. As a result, it was confirmed that 3D-ESPI system measured the right strain near the semi-circular edge crack of the specimens.

  • PDF

스트로보스코픽 ESPI를 이용한 진동측정 (Vibration measurement with stroboscopic ESPI)

  • Ung, Gang-Jeon;Yeong, Yun-Hae;Jun, Jeong-Seung;Gi, Hong-Jeong
    • 한국광학회:학술대회논문집
    • /
    • 한국광학회 2003년도 제14회 정기총회 및 03년 동계학술발표회
    • /
    • pp.20-21
    • /
    • 2003
  • Electronic speckle pattern interferometry has many applications in science and engineering. Among these, vibration measurement is the area where ESPI has many advantages over other techniques. We developed a stroboscopic ESPI system to measure the harmonic vibration of a piece of copper tape attached to a circular hole structure. Figure 1 shows the schematic diagram of the stroboscopic ESPI system. (omitted)

  • PDF

직사각형 평판의 진동모드 해석에 관한 ESPI의 적용성 평가 (Applicability estimation of ESPI on the vibration mode analysis of rectangular plate)

  • 김경석;정현철;박경주;양승필
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 춘계학술대회 논문집
    • /
    • pp.61-67
    • /
    • 1997
  • The electronic speckle pattern interferometer (ESPI) has been applied to many technical problems such as deformation and displacement measurement, strain visualization and surface roughness monitoring. In this study, we used an ESPI system based on the dual beam speckle interferometer method in order to measure in-plane displacement and vibration mode using the ESIP technique. This research was carried out for the purpose of applying the vibration analysis method employing Electro-Optic holographic interference technique to the vibration analysis of uniform rectangular cantilevers plate(SS400,STS304) with cantilevers span to breadth ratio of 150 by 75. And thickness of 1mm and 0.8mm respectively. We improved the ESPI technique in order to obtain the distribution of displacement component resolved in one direction through a CCD camera combined with an image processing system. To certify and to assess the accuracy in measuring by this ESPI, the results obtained with the speckle method and vibration mode analysis are to be compared with those results by Warbuton's Theoretical expression and vibration made in FEM analysis.

  • PDF

시간 평균 ESPI를 이용한 진동 물체의 공진 주파수 검출 신뢰도 검증에 대한 연구 (A Study on Reliability Verification of Resonance Frequency Detection of Vibration Object using Time-average ESPI)

  • 홍경민;유원재;강영준;이동환
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.930-933
    • /
    • 2005
  • Non-destructive inspection techniques using laser have been breading their application areas as well as growing their measurement skills together with the rapid development of circumferential technology like fiber optics. computer and image processing The ESPI technique is already on the stage of on-line testing with commercial products in developed country nations. Especially, this technique is expected to be applied to the nuclear industry, automobile and aerospace because it is proper for the vibration measurement and it can be applied to objects of a high temperature. This paper describes the use of the ESPI system for measuring vibration patterns on the reflecting objects. Using this system, high-quality Jo fringes for identifying mode shapes are displayed. A bias vibration is introduced into the reference beam to shift the Jo fringes so that fringe shift algorithms can be used to determine vibration amplitude. Using this method. amplitude fields for vibrating objects were obtained directly from the time-average interferometer recorded by the ESPI system.

  • PDF

3D-ESPI 시스템을 이용하여 결정된 응력집중계수가 피로수명에 미치는 영향에 관한 연구 (A Study on the Effect of Stress Concentration Factor Determined by 3D-ESPI System on the Fatigue Life)

  • 김경수;심천식
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.46-51
    • /
    • 2002
  • Fatigue life estimation by the theoretical stress concentration factors are, in general, considerably different from test results. And in calculating stress concentration factor, it is very difficult to consider actual geometry and material property which are the notch shapes, imperfections or defects of materials such as porosities inclusions and casting defects, etc. Therefore, the paper deals with the experimental method to find out the more exact stress concentration factors by measuring the strain distributions on each specimen by 3D-ESPI(Electronic Speckle Pattern Interferometry) System. Then the fatigue lives are compared between theoretical calculations using stress concentration factors determined by 3D-ESPI system and fatigue test results.

RESIDUAL STRESS MEASUREMENT ON THE BUTT-WELDED AREA BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY

  • KIM, KYEONGSUK;CHOI, TAEHO;NA, MAN GYUN;JUNG, HYUNCHUL
    • Nuclear Engineering and Technology
    • /
    • 제47권1호
    • /
    • pp.115-125
    • /
    • 2015
  • Background: Residual stress always exists on any kind of welded area. This residual stress can cause the welded material to crack or fracture. For many years, the hole-drilling method has been widely used for measuring residual stress. However, this method is destructive. Nowadays, electronic speckle pattern interferometry (ESPI) can be used to measure residual stress with or without the hole-drilling method. ESPI is an optical nondestructive testing methods that use the speckle effect. Mechanical properties can be measured by calculation of the phase difference by the variation of temperature, pressure, or loading force. Methods: In this paper, the residual stress on the butt-welded area is measured by using ESPI with a suggested numerical calculation. Two types of specimens are prepared. Type I is made of pure base metal part and type II has a welded part at the center. These specimens are tensile tested with a material test system. At the same time, the ESPI system was applied to this test. Results: From the results of ESPI, the elastic modulus and the residual stress around the welded area can be calculated and estimated. Conclusion: With this result, it is confirmed that the residual stress on the welded area can be measured with high precision by ESPI.