• Title/Summary/Keyword: ESDOF

Search Result 20, Processing Time 0.024 seconds

Seismic performance of RC buildings subjected to past earthquakes in Turkey

  • Inel, Mehmet;Meral, Emrah
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.483-503
    • /
    • 2016
  • This study aims to evaluate seismic performance of existing low and mid-rise reinforced concrete buildings by comparing their displacement capacities and displacement demands under selected ground motions experienced in Turkey as well as demand spectrum provided in 2007 Turkish Earthquake Code for design earthquake with 10% probability of exceedance in 50 years for soil class Z3. It should be noted that typical residential buildings are designed according to demand spectrum of 10% probability of exceedance in 50 years. Three RC building sets as 2-, 4- and 7-story, are selected to represent reference low-and mid-rise buildings located in the high seismicity region of Turkey. The selected buildings are typical beam-column RC frame buildings with no shear walls. The outcomes of detailed field and archive investigation including approximately 500 real residential RC buildings established building models to reflect existing building stock. Total of 72 3-D building models are constructed from the reference buildings to include the effects of some properties such as structural irregularities, concrete strength, seismic codes, structural deficiencies, transverse reinforcement detailing, and number of story on seismic performance of low and mid-rise RC buildings. Capacity curves of building sets are obtained by nonlinear static analyses conducted in two principal directions, resulting in 144 models. The inelastic dynamic characteristics are represented by "equivalent" Single-Degree-of- Freedom (ESDOF) systems using obtained capacity curves of buildings. Nonlinear time history analysis is used to estimate displacement demands of representative building models idealized with (ESDOF) systems subjected to the selected ground motion records from past earthquakes in Turkey. The results show that the significant number of pre-modern code 4- and 7-story buildings exceeds LS performance level while the modern code 4- and 7-story buildings have better performances. The findings obviously indicate the existence of destructive earthquakes especially for 4- and 7-story buildings. Significant improvements in the performance of the buildings per modern code are also obvious in the study. Almost one third of pre-modern code buildings is exceeding LS level during records in the past earthquakes. This observation also supports the building damages experienced in the past earthquake events in Turkey.

Inelastic behavior of systems with flexible base

  • Fernandez-Sola, Luciano R.;Huerta-E catl, Juan E.
    • Earthquakes and Structures
    • /
    • v.14 no.5
    • /
    • pp.411-424
    • /
    • 2018
  • This study explores the inelastic behavior of systems with flexible base. The use of a single degree of freedom system (ESDOF) with equivalent ductility to represent the response of flexible base systems is discussed. Two different equations to compute equivalent ductility are proposed, one which includes the contribution of rigid body components, and other based on the overstrength of the structure. In order to asses the accuracy of ESDOF approach with the proposed equations, the behavior of a 10-story regular building with reinforced concrete (RC) moment resisting frames is studied. Local and global ductility capacity and demands are used to study the modifications introduced by base flexibility. Three soil types are considered with shear wave velocities of 70, 100 and 250 m/s. Soil-foundation stiffness is included with a set of springs on the base (impedance functions). Capacity curves of the building are computed with pushover analysis. In addition, non linear time history analysis are used to asses the ductility demands. Results show that ductility capacity of the soil-structure system including rigid body components is reduced. Base flexibility does not modify neither yield and maximum base shear. Equivalent ductility estimated with the proposed equations is fits better the results of the numerical model than the one considering elastoplastic behavior. Modification of beams ductility demand due to base flexibility are not constant within the structure. Some elements experience reduced ductility demands while other elements experience increments when flexible base is considered. Soil structure interaction produces changes in the relation between yield strength reduction factor and structure ductility demand. These changes are dependent on the spectral shape and the period of the system with fixed and flexible base.

Evaluation of Seismic Performance of Mixed Building Structures by using the Nonlinear Displacement Mode Method (비선형 변위모드법을 적용한 복합구조물의 내진성능평가)

  • 김부식;송호산
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.71-80
    • /
    • 2003
  • Though a nonlinear time history analysis may be provided to estimate more exactly the seismic performance of building structure, approximation methods are still needed in the aspect of practicality and simplicity, In converting a multi-story structure to an equivalent SDOF system, the mode vectors of the multi-story structure are assumed as the mode shape in elastic state regardless of elastic or elastic-plastic state. However, the characteristics of displacement mode are also changed after the yielding made in the structural elements, because the structure becomes inelastic in each incremental load step. In this research, a method of converting MDOF system to ESDOF system is presented by using nonlinear displacement mode considering the mode change of structures after the yielding. Also, the accuracy and efficiency of the method of the nonlinear displacement mode method of the estimate of seismic response of Mixed Building Structures were examined by comparing the displacements of the roof level of the multi-story building structures estimated from this converted displacement response of ESDOF with the displacement of the roof level through the nonlinear dynamic analysis of the multi-story building structures subjected to an actual earthquake excitation.

Effect of Equivalent SDOF Methods for Seismic Evaluation of Bridge Structures (교량구조물의 지진응답에 대한 등가단자유도 방법의 영향)

  • Nam, Wang-Hyun;Song, Jong-Keol;Chung, Yeong-Hwa
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.316-323
    • /
    • 2005
  • The capacity spectrum method (CSM) can be used for the evaluation of inelastic maximum response of structures and has been recently used in the seismic design using the incorporation of pushover analysis and response spectrum method. To efficiently evaluate seismic performance of multi-degree-of freedom (MDOF) bridge structures, it is important that the equivalent response of MDOF bridge structures be calculated. In this study to calculate the equivalent response of MDOF system, equivalent responses are obtained by the using Song method, N2 method and Calvi method. Also, these are applied the CSM method and seismic performance of bridge according to the ESDOF method are compared and evaluated.

  • PDF

Seismic Performance Evaluation of Multi-Span Bridges using CSM and modified DCM (역량스펙트럼 방법과 수정변위계수법을 이용한 다경간 교량의 내진성능 평가)

  • Nam, Wang-Hyun;Song, Jong-Keol;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.119-126
    • /
    • 2006
  • Capacity spectrum method(CSM) of ATC-40(1996) and displacement coefficient method(DCM)of FEMA-273(1997) are applied to evaluate the seismic performance of bridges. In this study, equivalent response is obtained from nonlinear static analysis for the 3spans continues bridge and nonlinear maximum displacement response is calculated using CSM and DCM. Nonlinear maximum displacement response of DCM is larger than this of CSM. It is method that DCM can evaluate target displacement and ductility of structural to be easy and simple, but tend to overestimate the maximum displacement response. Therefore, this method is mainly used at preparation design level to evaluate the structural response. It is not desirable to evaluate the seismic performance using DCM.

  • PDF

Evaluation of Inelastic Displacement Response of Bridge Structures Using Lateral Load Distributions (횡하중 분배방법을 이용한 교량구조물의 비탄성 변위응답 평가)

  • Song, Jong-Keol;Nam, Wang-Hyun;Chung, Yeong-Hwa
    • Journal of Industrial Technology
    • /
    • v.25 no.A
    • /
    • pp.15-22
    • /
    • 2005
  • In order to evaluate seismic performance of multi-degree-of-freedom bridge structure, moderate lateral load distribution methods using the pushover analysis were developed by many researchers. One of important variables to improve an accuracy of pushover analysis is lateral load distribution. In this study, pushover analyses were performed using the five types of lateral load distribution and seismic performances were evaluated by capacity spectrum method (CSM). To verify an accuracy of suggested lateral load distribution, the maximum displacement estimates by the CSM were compared to those by inelastic time history analysis.

  • PDF

An improved pushover analysis procedure for multi-mode seismic performance evaluation of bridges: (2) Correlation study for verification

  • Kwak, Hyo-Gyoung;Shin, Dong Kyu
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.239-255
    • /
    • 2009
  • In the companion paper, a simple but effective analysis procedure termed an Improved Modal Pushover Analysis (IMPA) is proposed to estimate the seismic capacities of multi-span continuous bridge structures on the basis of the modal pushover analysis, which considers all the dynamic modes of a structure. In contrast to previous studies, the IMPA maintains the simplicity of the capacity-demand curve method and gives a better estimation of the maximum dynamic response in a bridge structure. Nevertheless, to verify its applicability, additional parametric studies for multi-span continuous bridges with large differences in the length of adjacent piers are required. This paper, accordingly, concentrates on a parametric study to review the efficiency and limitation in the application of IMPA to bridge structures through a correlation study between various analytical models including the equivalent single-degree-of-freedom method (ESDOF) and modal pushover analysis (MPA) that are usually used in the seismic design of bridge structures. Based on the obtained numerical results, this paper offers practical guidance and/or limitations when using IMPA to predict the seismic response of a bridge effectively.

Applicability of Improved Modal Pushover Analysis of Multi-Span Bridges Under Earthquake Load (다경간 연속 교량의 내진성능 평가를 위한 개선된 모드별 비탄성 정적해석방법의 응용성 연구)

  • Kwak, Hyo-Gyoung;Shin, Dong-Kyu
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.795-800
    • /
    • 2007
  • In the previous study, a simple but effective analysis procedure, named as an Improved Modal Pushover Analysis (IMPA) was proposed to estimates the seismic capacities of multi-span continuous bridge structures, on the basis of the modal pushover analysis which considers all the dynamic modes of a structure. Differently from other previous studies, IMPA maintains the simplicity of the capacity-demand curve method and also gives a better estimation of the maximum dynamic response of a structure. Nevertheless, its applicability has never been approved for multi-span continuous bridges with large differences in the length of their adjacent piers. This paper, accordingly, concentrates on a parametric study to verify the efficiency and limitation in application of IMPA through a correlation study between various analytical models including the Equivalent Single Degree Of Freedom (ESDOF) and Modal Pushover Analysis (MPA) usually used in the seismic design of structures. Based on the obtained numerical results, this paper introduces a practical guidance and/or limitation for using IMPA to predict the seismic response of a bridge effectively.

  • PDF

Capacity Spectrum Method Based on Inelastic Displacement Ratio (비탄성변위비를 이용한 능력 스펙트럼법)

  • Han, Sang-Whan;Bae, Mun-Su
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.2
    • /
    • pp.69-80
    • /
    • 2008
  • In this study, improved capacity spectrum method (CSM) is proposed. The method can account for higher mode contribution to the seismic response of MDOF systems. The CSM has been conveniently used for determining maximum roof displacement using both demand spectrum and capacity curve of equivalent SDOF system. Unlike the conventional CSM, the maximum roof displacement is determined without iteration using inelastic displacement ratio and R factor calculated from demand spectrum and capacity curve. Three moment resisting steel frames of 3-, 9- and 20-stories are considered to test the accuracy of the proposed method. Nonlinear response history analysis (NL-RHA) for three frames is also conducted, which is considered as an exact solution. SAC LA 10/50 and 2/50 sets of ground motions are used. Moreover, this study estimates maximum story drift ratios (IDR) using ATC-40 CSM and N2-method and compared with those from the proposed method and NL-RHA. It shows that the proposed CSM estimates the maximum IDR accurately better than the previous methods.

Seismic Damage Analysis for Element-Level and System-Level of Steel Structures (강구조물의 구조요소 및 구조계에 대한 지진손상도 해석)

  • 송종걸;윤정방;이동근
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.95-111
    • /
    • 1998
  • In this study, the concepts and procedures of the seismic damage analysis methods are examined for both the element-level and the system-level. The seismic damage analysis at the element-level is performed for several example structures using existing method for structural elements or single-degree-of-freedom (SDOF) systems such as the Park and Ang method. In order to analyze seismic damage at the system-level, two types of procedures are used. In the first type of procedure, the system-level seismic responses can be estimated by using the system representative response method(SRRM), or the equivalent SDOF system response method (ESDOF-SRM). Then, the system-level seismic damage is analyzed from the system-level seismic responses using existing method for structural elements or SDOF systems. IN the second type of procedure, the system-level seismic damages are analyzed using the element damage combination method (EDCM) combing the element-level damage indices determined by existing method. To compare tendency of the seismic damage analysis using each methods, example analysis is accomplished for several cases of different structures and different earthquake excitation.

  • PDF