• Title/Summary/Keyword: ESD Stress Mode

Search Result 4, Processing Time 0.02 seconds

Stress mode proposal for an efficient ESD test (효율적인 ESD(ElectroStatic Discharge) test를 위한 Stress mode 제안)

  • Gang, Ji-Ung;Chang, Seog-Weon;Kwack, Kae-Dal
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1289-1294
    • /
    • 2008
  • Electrostatic discharge(ESD) phenomenon is a serious reliability concern. It causes approximately most of all field failures of IC. To quality the ESD immunity of IC product, there are some test methods and standards developed. ESD events have been classified into 3 models, which are HBM, MM and CDM. All the test methods are designed to evaluate the ESD immunity of IC products. This study provides an overview among ESD test methods on ICs and an efficient ESD stress method. We have estimated on all pin combination about the positive and negative ESD stress. We make out the weakest stress mode. This mode called a worst-case mode. We proposed that positive supply voltage pin and I/O pin combination is efficient because it is a worst-case mode.

  • PDF

The Design of SCR-based Whole-Chip ESD Protection with Dual-Direction and High Holding Voltage (양 방향성과 높은 홀딩전압을 갖는 사이리스터 기반 Whole-Chip ESD 보호회로)

  • Song, Bo-Bae;Han, Jung-Woo;Nam, Jong-Ho;Choi, Yong-Nam;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.378-384
    • /
    • 2013
  • We have investigated the electrical characteristics of SCR(Silicon Controlled Rectifier)-based ESD power clamp circuit with high holding voltage and dual-directional ESD protection cells for a whole-chip ESD protection. The measurement results indicate that the dimension of n/p-well and p-drift has a great effect on holding voltage (2V-5V). Also A dual-directional ESD protection circuit is designed for I/O ESD protection application. The trigger voltage and the holding voltage are measured to 5V and 3V respectively. In comparison with typical ESD protection schemes for whole-chip ESD protection, this ESD protection device can provide an effective protection for ICs against ESD pulses in the two opposite directions, so this design scheme for whole-chip ESD protection can be discharged in ESD-stress mode (PD, ND, PS, NS) as well as VDD-VSS mode. Finally, a whole-chip ESD protection can be applied to 2.5~3.3V VDD applications. The robustness of the novel ESD protection cells are measured to HBM 8kV and MM 400V.

A Study on the Electrical Characteristic of SCR-based Dual-Directional ESD Protection Circuit According to Change of Design Parameters (SCR 기반 양방향성 ESD보호회로의 설계 변수 변화에 따른 전기적 특성의 관한 연구)

  • Kim, Hyun-Young;Lee, Chung-Kwang;Nam, Jong-Ho;Kwak, Jae-Chang;Koo, Yong-Seo
    • Journal of IKEEE
    • /
    • v.19 no.2
    • /
    • pp.265-270
    • /
    • 2015
  • In this paper, we proposed a dual-directional SCR (silicon-controlled rectifier) based ESD (electrostatic discharge) protection circuit. In comparison with conventional SCR, this ESD protection circuit can provide an effective protection against ESD pulses in the two opposite directions, so the ESD protection circuit can be discharged in two opposite direction. The proposed circuit has a higher holding voltage characteristic than conventional SCR. These characteristic enable to have latch-up immunity under normal operating conditions as well as superior full chip ESD protection. it was analyzed to figure out electrical characteristics in term of individual design parameters. They are investigated by using the Synopsys TCAD simulator. In the simulation results, it has trigger voltage of 6.5V and holding voltage increased with different design parameters. The holding voltage of the proposed circuit changes from 2.1V to 6.3V and the proposed circuit has symmetrical I-V characteristic for positive and negative ESD pulse.

Effects of Electrostatic Discharge Stress on Current-Voltage and Reverse Recovery Time of Fast Power Diode

  • Bouangeune, Daoheung;Choi, Sang-Sik;Cho, Deok-Ho;Shim, Kyu-Hwan;Chang, Sung-Yong;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.4
    • /
    • pp.495-502
    • /
    • 2014
  • Fast recovery diodes (FRDs) were developed using the $p^{{+}{+}}/n^-/n^{{+}{+}}$ epitaxial layers grown by low temperature epitaxy technology. We investigated the effect of electrostatic discharge (ESD) stresses on their electrical and switching properties using current-voltage (I-V) and reverse recovery time analyses. The FRDs presented a high breakdown voltage, >450 V, and a low reverse leakage current, < $10^{-9}$ A. From the temperature dependence of thermal activation energy, the reverse leakage current was dominated by thermal generation-recombination and diffusion, respectively, at low and high temperature regions. By virtue of the abrupt junction and the Pt drive-in for the controlling of carrier lifetime, the soft reverse recovery behavior could be obtained along with a well-controlled reverse recovery time of 21.12 ns. The FRDs exhibited excellent ESD robustness with negligible degradations in the I-V and the reverse recovery characteristics up to ${\pm}5.5$ kV of HBM and ${\pm}3.5$ kV of IEC61000-4-2 shocks. Likewise, transmission line pulse (TLP) analysis reveals that the FRDs can handle the maximum peak pulse current, $I_{pp,max}$, up to 30 A in the forward mode and down to - 24 A in the reverse mode. The robust ESD property can improve the long term reliability of various power applications such as automobile and switching mode power supply.