• Title/Summary/Keyword: ESC(European Steady-state Cycle)

Search Result 3, Processing Time 0.016 seconds

Particle Emission Characteristics of Heavy-duty Diesel Engine using Aftertreatment Systems (후처리장치 부착에 따른 대형디젤엔진의 입자 배출특성)

  • Kwon, Sangil;Park, Yonghee
    • Journal of ILASS-Korea
    • /
    • v.17 no.3
    • /
    • pp.146-151
    • /
    • 2012
  • This study was primarily focused on the experimental comparison of the particle emission characteristics for heavy duty engine. PM and particle number from various heavy duty engines and DPF type were analyzed with a golden particle measurement system recommended by the Particle Measurement Program. And the repeatability and reproducibility between test mode was analyzed. This study was conducted for the experimental comparison on particulate emission characteristics between the European and World-Harmonized test cycles for a heavy-duty diesel engine. To verify the particulate mass and particle number concentrations from various operating modes, ETC/ESC and WHTC/WHSC, both of which will be enacted in Euro VI emission legislation, were evaluated. Real-time particle formation of the transient cycles ETC and WHTC were strongly correlated with engine operating conditions and after-treatment device temperature. A higher particle number concentration during the ESC mode was ascribed to passive DPF regeneration and the thermal release of low volatile particles at high exhaust temperature conditions.

The Emission Characteristics of Bio-Diesel Fuel in Heavy-Duty Engine (바이오 디젤 적용에 따른 대형엔진의 배출가스 특성)

  • Kim, Sun-Moon;Eom, Myoung-Do;Hong, Ji-Hyung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.5
    • /
    • pp.499-506
    • /
    • 2010
  • Recently, a great deal of attention have been directed to the use of alternative fuels as a means to reduce vehicular emissions. As one of the promising alternative fuels, bio-diesel has advantages of a wide adaptability without retrofit of diesel engine. It is also effective enough to reduce CO, THC, $SO_x$, polycyclic aromatic hydrocarbons (PAHs) and PM. In this study, we investigated the emission characteristics of biofuels between different operating conditions, i.e., engine speed (1,400 rpm and 2,300 rpm), engine load (10% and 100%), bio-diesel blending (BD0, BD5 and BD20), and recirculation (EGR) rate of exhaust gas (0% and 20%). Relative performance of the system was evaluated mainly for the greenhouse gases ($CH_4$, $N_2O$ and $CO_2$). In addition, emission characteristics of ND-13 mode were also tested against both greenhouse gases and other airborne pollutants under emission regulation. The relative composition of bio-diesel has shown fairly clear effects on the emission quantities of CO, THC, and PM emission, although it was not on $NO_x$ and greenhouse gases. EGR rate has shown trade-off characteristics between $NO_x$ and PM.

Exhaust Emission Characteristics from Heavy-duty Diesel Engine applicable to Prime Propulsion Engine for Marine Vessels (선박 주 추진기관으로 사용가능한 대형 디젤엔진의 배기가스 특성 분석)

  • Lee, Hyung-Min;Park, Rang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.484-489
    • /
    • 2012
  • The objective of this work presented here was focused on analysis of particulate matter and nitrogen oxide characteristics in ESC test mode from heavy-duty diesel engine installed on-road vehicles applicable to prime propulsion engine for marine vessels. The authors confirmed that a large quantity particulate matter were emitted in high power density condition, nitrogen oxide characteristics were dependent on exhaust gas temperature. Particulate matters were reduced by 1/100~1/1,000 times in post DPF with test modes but filtration efficiency was decreased in the engine power fluctuation. In the case of the high speed and power condition, the exhaust level of particulate matters was increased according to increment of temperature of gas flowing into DPF. The orders of magnitude for particle concentration levels from the analysis of size distribution of particulate matters of test engine was different. Both emitting nano-sized particles below 100nm regardless of DPF and non-DPF.