• 제목/요약/키워드: ER Damper(ER damper)

검색결과 61건 처리시간 0.036초

ER 유체 감쇠기를 이용한 유연 회전축 계의 진동제어 (Vibration Control of Flexible Rotor Systems Using an Electro-rheological Fluid Damper)

  • 임승철;채정재;박상민;윤은규
    • 한국소음진동공학회논문집
    • /
    • 제12권5호
    • /
    • pp.365-373
    • /
    • 2002
  • This paper concerns the design and application of an electro-rheological (ER) fluid damper to semiactive vibration control of rotor systems. In particular, the system under present study is constructed structurally flexible in order to explore multiple critical speeds within operation range. To this end, the dynamic models of the proposed ER damper and its associated amplifier are derived in the first place. Subsequently entire rotor system model is assembled along with the dynamics of the end effector based on a finite element method enabling prediction as to its free and forced vibration characteristics. Next, an artificial intelligent (AI) feedback controller is synthesized taking into account the peculiarity of Coulomb damping effect in rotor applications. Finally, computational and experimental results are presented including model validation and control performances. In practice, such an AI control proved effective whether the spin speed was either before or after critical speeds.

제어 가능한 댐퍼를 적용한 시트 현가장치의 승차감 평가 (Ride Quality Evaluation of Seat Suspension Adopting Controllable Damper)

  • 한영민;민철기
    • 한국소음진동공학회논문집
    • /
    • 제21권12호
    • /
    • pp.1199-1205
    • /
    • 2011
  • In the present work, a seat suspension system adopting semi-active damper is evaluated for driver's ride quality. A cylindrical type of ER(electrorheological) damper is designed and manufactured for the seat suspension of heavy vehicles. The governing equation is derived under consideration of human vibration. A sliding mode controller is then synthesized and experimentally realized on the manufactured ER seat suspension while a driver is sitting on the controlled seat. Ride quality is evaluated by fatigue decreased proficiency boundary, vibration dose value and crest factor utilizing weighted-acceleration according to ISO2631.

Electro-Rheological 유체를 이용한 무한폭 스퀴즈 필름 댐퍼 해석 (Analysis of an Infinitely Long Squeeze Film Damper Operating with an Electro-Rheological Fluid)

  • 정시영;최승복;조용철
    • 한국정밀공학회지
    • /
    • 제9권3호
    • /
    • pp.61-66
    • /
    • 1992
  • This paper addresses on the determination of damping coefficients of an infinitely long squeeze film damper operating with an electro-rheological (ER) fluid. The ER fluid behaves as Bingham fluid with an electric field dependent yield shear stress. AS phenomenological model of the fluid is adopted for the relationship between the yield shear and the intensity of the electric field imposed on the fluid domain. The model is then incorporated with the governing equation and associated boundary conditions of the squeeze film damper executing a circula centered orbit for the expression of dimension- less damping coefficients. Numerical simulation is performed to evaluate the performance improvement of the proposed squeeze film damper.

  • PDF

ER댐퍼를 이용한 유연 구조물의 진동제어 (Vibration Control of Flexible Structures using ER Fluid Dampers)

  • 이재홍;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1996년도 추계학술대회논문집; 한국과학기술회관, 8 Nov. 1996
    • /
    • pp.243-247
    • /
    • 1996
  • This paper presents a vibration control of a flexible structure using a controllable ER fluid damper. A clamped-clamped flexible structure system supported by two short columns mimicking a small-sized bridge system is considered. An ER fluid damper which is operated in shear mode is designed and attached to the middle of the flexible structure. The governing equation of motion and associated boundary conditions are derived from Hamilton's principle. A sliding mode control is formulated in order to actively suppress the vibration of the structure due to external excitations. Experimental control results are presented in the frequency domain.

  • PDF

ER유체를 이용한 이방성 스퀴즈필름 댐퍼의 응답특성에 관한 연구 (A Modeling of a Variable-damping Mount Using Magneto-Rheological Fluid)

  • 안영공;양보석;삼하신
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.256-261
    • /
    • 2000
  • Electro-Rheological(ER) fluid is applied to a controllable squeeze film damper(SFD) for stabilizing a flexible rotor system. ER fluid is a class of functional fluid whose yield stress varies according to the applied electric field strength, which is observed as viscosity variation of the fluid. In applying ER fluid to a SFD, a pair of rings of the damper can be used as electrodes. When the electrodes are divided into a horizontal pair and a vertical one, the SFD can produce damping force in each direction independently. A prototype of the directionally controllable SFD was constructed and its performance was experimentally and numerically investigated in the present work.

  • PDF

ER유체의 기계적 내구성 및 ER댐퍼의 성능고찰 (Mechanical Durability of ER Fluids and Performance Investigation of ER Dampers)

  • 박우철;최승복;정재천;서문석;강윤수;여문수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1044-1047
    • /
    • 1996
  • This paper presents durability characteristics of electrorheological(ER) fluids which undergo a reversible phase change depending upon the imposition of electric fields. The field-dependent Bingham properties are subjected to be altered from long time use of the ER fluid. The level of the changed properties depends upon employed device and test conditions. A piston-rod system which has same mechanism as ER dampers is adopted in this study and tested by increasing operation cycle up to 1 million. Bingham properties of initial and us ER fluids are tested and compared. In addition, these ER fluids are applied to ER damper in order to evaluate damping force performance.

  • PDF

Vibration control of mechanical systems using semi-active MR-damper

  • Maiti, Dipak K.;Shyju, P.P.;Vijayaraju, K.
    • Smart Structures and Systems
    • /
    • 제2권1호
    • /
    • pp.61-80
    • /
    • 2006
  • The concept of structural vibration control is to absorb vibration energy of the structure by introducing auxiliary devices. Various types of structural vibration control theories and devices have been recently developed and introduced into mechanical systems. One of such devices is damper employing controllable fluids such as ElectroRheological (ER) or MagnetoRheological (MR) fluids. MagnetoRheological (MR) materials are suspensions of fine magnetizable ferromagnetic particles in a non-magnetic medium exhibiting controllable rheological behaviour in the presence of an applied magnetic field. This paper presents the modelling of an MRfluid damper. The damper model is developed based on Newtonian shear flow and Bingham plastic shear flow models. The geometric parameters are varied to get the optimised damper characteristics. The numerical analysis is carried out to estimate the damping coefficient and damping force. The analytical results are compared with the experimental results. The results confirm that MR damper is one of the most promising new semi-active devices for structural vibration control.

가변댐퍼의 성능해석

  • 최용빈;박우철;최승복;정재천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.227-231
    • /
    • 1992
  • 본 연구에서는 ER(electro-rheological) 유체을 이용한 가변댐퍼(variable damper)를 제안했다. 전기장(electric field) 부하시 Bingham특성을 갖는 ER유체는 전기장에따라 항복전단응력이 변하기 때문에이를 이용하여 댐핑력을 제어할 수 있다. 피스톤의 상하압력차가 전기장의 함수이기 때문에 기존의 비능동 혹은 능동형 댐퍼에서 필요로하는 복잡한 밸브시스템이 필요없으며, 따라서 구조면에서 매우 간단하게 설계될 수 있고, 반응시간 또한 매우 빠르다. 간단한 현가정치 모델을 설정 하여제안된 ER 댐퍼의 효율성과 우수성을 주파수 및 시간 영역에서 해석하였다.

퍼지이동 슬라이딩모드 제어기를 이용한 1/4차량의 ER현가장치 진동제어 (Vibration Control of Quarter Vehicle ER Suspension System Using Fuzzy Moving Sliding Mode Controller)

  • 성금길;조재완;최승복
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.644-649
    • /
    • 2006
  • This paper presents a robust and superior control performance of a quarter-vehicle electrorheological (ER) suspension system. In order to achieve this goal, a moving sliding mode control algorithm is adopted, and its moving strategy is tuned by fuzzy logic. As a first step, ER damper is designed and manufactured for a passenger vehicle suspension system, and its field-dependent damping force is experimentally evaluated. After formulating the governing equation of motion for the quarter-vehicle ER suspension system, a stable sliding surface and moving algorithm based on fuzzy logic are formulated. The fuzzy moving sliding mode controller is then constructed and experimentally implemented. Control performances of the ER suspension system are evaluated in both time and frequency domains.

  • PDF