• 제목/요약/키워드: ER유체

검색결과 180건 처리시간 0.029초

가변댐퍼의 성능해석

  • 최용빈;박우철;최승복;정재천
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1992년도 춘계학술대회 논문집
    • /
    • pp.227-231
    • /
    • 1992
  • 본 연구에서는 ER(electro-rheological) 유체을 이용한 가변댐퍼(variable damper)를 제안했다. 전기장(electric field) 부하시 Bingham특성을 갖는 ER유체는 전기장에따라 항복전단응력이 변하기 때문에이를 이용하여 댐핑력을 제어할 수 있다. 피스톤의 상하압력차가 전기장의 함수이기 때문에 기존의 비능동 혹은 능동형 댐퍼에서 필요로하는 복잡한 밸브시스템이 필요없으며, 따라서 구조면에서 매우 간단하게 설계될 수 있고, 반응시간 또한 매우 빠르다. 간단한 현가정치 모델을 설정 하여제안된 ER 댐퍼의 효율성과 우수성을 주파수 및 시간 영역에서 해석하였다.

ER유체를 이용한 미세 연마 가공 (Micro Plishing using Electorheological fluid)

  • 김욱배;이성재;박철우;이상조
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2000년도 추계학술대회 논문집
    • /
    • pp.850-853
    • /
    • 2000
  • It is well-known that Electro-rheological(ER) fluid is a material(suspension) which shows the dramatic change of rheological properties under an electric field. Using these properties, the concept that variable apparent viscosity of ER fluid could be applicable to the polishing for micro parts was introduced. It was investigated that how it works for polishing and how it affects ER effect when abrasives were mixed with an ER fluid. Therefore a few structures for polishing using ER fluid was suggested and evaluated by means of experiments. In this paper, fundamental mechanism and experimental results are described.

  • PDF

전기장으로 제어되는 ER유체의 유동특성에 관한 연구 (Study on Flow Characteristics of Electro-Rheological Fluids with Electric Field Control)

  • 윤신일;장성철;이해수
    • 한국공작기계학회논문집
    • /
    • 제14권5호
    • /
    • pp.49-54
    • /
    • 2005
  • An experimental Investigation was performed to study the characteristics of Electro-Rheological fluid flow in a horizontal rectangular tube with or without D.C electric field control. First, the microscopic behavior of the ER suspension structure between rectangular tube brass electrodes for the stationary ER nut(i and flow of the ER fluid was investigated by flow visualization. The flow of the ER fluid between fluid rectangular tube was solved experimental using the constitutive equation for a Bingham fluid. ER fluid is made silicon oil mixed with $0.2wt\%$ starch having hydrous particles. Velocity distributions of the ER fluids were obtained by particle image velocimetry measuring those of the clusters using an image processing technique.

다전극을 이용한 ER유체 유동모드 가시화에 관한 연구 (A study on visualization about the flow mode of ER fluid using the DME)

  • 이육형
    • 한국기계가공학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2010
  • A new flow mode of ER fluid available for controlling the damping force by using DME(Discrete Multi-Electrode) is presented in this study. Various characteristics about the flow of ER fluid through the experiment of ER cluster behavior visualization can be assumed. The pressure in electrode length and voltage division mode is measured. An actuator with a damping effect through DME ER damper will be developed. This damper controls the damping force by using the displacement and velocity of the plant which consists of the various electrode length and voltage modes without a controller in the real system.

인산화 전분 ER 유체의 댐퍼 내구 특성 (Durability of Phosphorated Starch Based Electrorheological Fluids in Damper Application)

  • 이철희;장민규;손정우;한영민;최승복
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.285-291
    • /
    • 2009
  • In this work, durability characteristics of electrorheological (ER) fluid for damper application are experimentally investigated. ER fluid is prepared by using phosphorated starch particles and silicone oil. The field-dependent Bingham characteristics and response time for the proposed ER fluids are experimentally obtained. Experimental apparatus of durability test for ER fluid is established with cylindrical ER cylinder for mid-sized passenger vehicle. In order to evaluate the durability characteristics of ER fluid as a function of time, damping force and temperature variations are measured until one million cycles. After durability test, Bingham characteristics and response time of ER fluid are measured and compared to the initial properties. Microscopic pictures of ER fluid are taken to validate the changes of properties. The results indicate that the ER fluid can be commercially utilized in vehicle damper system with its durability performance. Moreover, the understanding of durability characteristics is essential to predict the service life of ER fluid as well as to design its applications.

가시화를 통한 ER유체의 클러스터 형성 구조에 관한 연구 (A Study on the Mechanism of Clusters Formation of ER Fluid Through Visualization)

  • 이은준;박명관
    • 대한기계학회논문집B
    • /
    • 제25권12호
    • /
    • pp.1684-1691
    • /
    • 2001
  • Electrorheological fluids(ERFs) show a rapid and reversible increase in apparent viscosity by applied electric field. It is called the electrorheological effect (ER effect). The reason for ER effect is the induction of an electric dipole in each particle, leading to the formation of clusters in the direction of the field, which resist fluid flow. Generally, the behavior of ER fluids has been modeled on those of Bingham fluids. But there are some differences between Bingham fluids and ER fluids. The visualization of ER fliuds are presented and ER effects by the forming, growing and breaking of clusters are discussed. In the low shear rate area, the pressure drop is measured by a pressure sensor and the formation of ER particles is visualized by video camera. The reason for the nonlinear behavior of ER fluids at low shear rate is explained through results of visualization. As result, the behavior of ER fluids is nonlinear at low shear rate with overshoot area because it is different to from the clusters according to the strength of electric field. The gap of electrodes becomes narrow because of the cluster layer occurrence near to electrodes in any conditions.

평행평판의 전극형상에 따른 ER 유체의 유동특성 I (The Flow Characteristics of ER Fluids According to the Electrode Shape of Two Parallel-Plate)

  • 장성철;염만오;김도태;김태형;배태열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.207-212
    • /
    • 2001
  • Electro-Rheological(ER) fluid are suspensions which show an abrupt increase in rheological properties under electric fields. ER effects arise from electrostatic forces between the starch particles dispersed in the electrically insulating silicone oil, induced when an electric field is applied. Yield stress of the fluids were measured on the couette cell type rheometer as a function of electric fields. This paper presents performance analyses of four types of the two parallel-plate. Which have different electrode length and width but same electrode area. On the basis of the pressure drop and flow rate analysis. Four types of the two parallel-plate are designed and manufactured. Using ER fluid, it is possible to directly interface between electric signals and fluid power without moving parts.

  • PDF

전기점성유체와 압전세라믹을 이용한 복합지능구조물의 진동제어 (Vibration Control of Hybrid Smart Structure Using ER Fluids and Piezoelectric Ceramics)

  • 윤신일;박근효;한상보
    • 한국소음진동공학회논문집
    • /
    • 제13권8호
    • /
    • pp.612-618
    • /
    • 2003
  • A hybrid vibration control scheme using ER fluid and PZT patches is proposed. Dynamic characteristics of the beam embedded with the ER fluid can be controled by changing the strength of the electric field applied on the ER fluid, thus provides a mean to avoid the resonance. It was found that active vibration control of the structure embedded with ER fluid failed to suppress the vibration excited with broad band frequency due to the limited change of the dynamic characteristics of the structure. To compensate this limited effect of the control scheme with ER fluid alone, PPF control using PZT patches as sensors and actuators is added to construct a hybrid controller. Experimental results suggests that proposed hybrid controller is effective to suppress the additional resonance vibration that appears when each controller is used alone.

ER 유체를 이용한 미세3차원 행상의 초정밀연마 (Ultraprecision Polishing Technique for Micro 3-Dimensional Structures using ER Fluids)

  • 김욱배;이상조;김용준;이응숙
    • 한국정밀공학회지
    • /
    • 제19권12호
    • /
    • pp.134-141
    • /
    • 2002
  • The ER fluid can be one of efficient materials in ultraprecision polishing for optics, ceramics and semiconductors because of electrically controllable apparent viscosity. To finish small 3 dimensional structures such as the aspherical surface in optical elements, the possible arrangement of a tool, workpiece and auxiliary electrode is described. We examined the influence of the addition of a few abrasive particles on the performance of the ER fluid by measuring yield stress, and observed the behavior of abrasive particles in the ER fluid by a CCD camera, which is also theoretically predicted from the electromechanical principles of particles. On the basis of the above results, the steady flow analysis around the rotating micro tool is worked out considering the non-uniform electric field. Finally, Pyrex glass is polished using the mixture of the ER fluid and abrasive particles, and the effect of the electric field strength is evaluated.