• 제목/요약/키워드: ER(Electrorheological Fluid)

검색결과 88건 처리시간 0.021초

ER 유체를 이용한 반능동 현가장치용 고전압 전원장치의 개발 (Development of High Voltage Power Supply for Semi-Active Suspension System Using ER Fluids)

  • 정세교;신휘범
    • 전력전자학회논문지
    • /
    • 제7권5호
    • /
    • pp.453-464
    • /
    • 2002
  • ER 유체(Electrorheological fluid)는 인가 전계에 따라 유체의 점도(Viscosity)와 댐핑력(Damping force)이 변화하는 혼합물질이며 반능동 현가장치, 고속 클러치, 진동 흡수장치 등에 적용되고 있다. ER 유체의 응용을 위해서는 강한 전계를 인가해 줄 수 있는 고전압 가변 전원장치가 필요하다. 본 논문에서는 반능동 현가장치에 적용하기 위한 전원장치의 개발에 대하여 기술하였다. ER 유체의 전기적 특성, 고전압 전원장치의 요구조건, 전원장치의 설계 및 제작에 대하여 설명하였으며 최종적으로 실험을 통하여 개발된 고전압 전원장치가 ER 유체 응용에 적합함을 검증하였다.

Synthesis and Electrorheological Effect of the Suspensions Composed of Nano Sized Hollow Polyaniline Derivatives

  • Choi Ung-Su
    • KSTLE International Journal
    • /
    • 제7권1호
    • /
    • pp.18-21
    • /
    • 2006
  • The electrorheology of hollow PANI derivative suspensions in silicone oil was investigated by varying the electric fields and shear rates, respectively. The hollow PANI derivative susepnsions showed a typical electrorheological (ER) response caused by the polarizability of an amide polar group and shear yield stress due to the formation of chains upon application of an electric field. The shear stress for the hollow PANI succinate suspension exhibited an electric field power of 0.67. On the basis of the experimental results, the newly synthesized hollow PANI derivative suspensions were found to be an anhydrous ER fluid.

Electrorheological Properties of Chitin and Chitosan Suspensions

  • 최웅수
    • KSTLE International Journal
    • /
    • 제6권1호
    • /
    • pp.8-12
    • /
    • 2005
  • The electrorheological properties pertaining to the electrorheological (ER) bebaviour of chitin and chitosan suspensions in silicone oil were investigated. Chitosan suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field, while chitin suspension acted as a Newtonian fluid. The difference in behaior results from the difference in the conductivity of the chitin and chitosan particles, even though they have a similar chemical structure. The shear stress for the chitosan suspension exhibited a linear dependence on the volume fraction of particles and a 1.18 power of the electric field. The experimental results for the chitosan suspension correlated with the conduction model for ER response.

전도성 모델에 의한 키토산 현탁액의 유변학적 특성 연구 (Electrorheology of Chitosan Suspension by Conduction Models)

  • 최웅수;안병길;이상순;권오관
    • Tribology and Lubricants
    • /
    • 제14권4호
    • /
    • pp.95-99
    • /
    • 1998
  • The electrorheological (ER) behavior of chitosan suspension in the silicone oil was investigated. Chitosan suspension showed a typical ER response, Bingham flow behavior upon application of an electric field due to the polarizability of the branched amino group of the chitosan particles. The shear yield stress exhibited a linear dependence on the volume fraction of particles and the squared electric field. On the basis of the experimental results, chitosan suspension has been correlated with the conduction models for ER response and found to be an ER fluid.

정상압력 유동 하에서 전기유변유체의 동적 응답 (Dynamic Responses of Electrorheological Fluid in Steady Pressure Flow)

  • 남윤주;박명관
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2879-2884
    • /
    • 2007
  • Dynamic responses of electrorheological (ER) fluids in steady pressure flow to stepwise electric field excitations are investigated experimentally. The transient periods under various applied electric fields and flow velocities were determined from the pressure behavior of the ER fluid in the flow channel with two parallel-plate electrodes. The pressure response times were exponentially decreased with the increase of the flow velocity, but increased with the increase of the applied electric field strength. In order to investigate the cluster structure formation of the ER particles, it was verified using the flow visualization technique that the transient response of ER fluids in the flow mode is assigned to the densification process in the competition of the electric field-induced particle attractive interaction forces and the hydrodynamic forces, unlike that in the shear mode determined by the aggregation process.

  • PDF

신경 제어 기법을 이용한 ER 밸브-실린더 시스템의 위치 제어 (Position Control of ER Valve-Cylinder System Via Neural Control Technique)

  • 정재민;최승복;정재천
    • 한국자동차공학회논문집
    • /
    • 제4권6호
    • /
    • pp.52-64
    • /
    • 1996
  • This paper presents an active position control of a single-rod cylinder system featuring an electrorheological(ER) fluid-based valve. The ER fluid consisting of silicone oil and chemically treated particles is firstly composed and its Bingham property is tested as a function of imposed electric field. A multi-channel plate type of ER valve is then designed and manufactured on the basis of the field-dependent Bingham model. Performance test of the ER valve is undertaken by evaluating pressure drop with respect to the number of electrode as well as the intensity of the electric field. Subsequently, the ER valve-cylinder system is constructed and its governing equation of motion is derived. A neural control scheme for position control of the cylinder is formulated by incorporating proportional-plus-derivative(PD) controller and implemented. Experimental results of both regulating and tracking control responses are presented in order to demonstrate the efficacy of the proposed ER valve-cylinder control system.

  • PDF

Role of surfactant on damping performance of polyaniline based electrorheological suspension

  • Kim, Ji-Woo;Kim, Chul-Am;Choi, Hyoung-Jin;Choi, Seung-Bok
    • Korea-Australia Rheology Journal
    • /
    • 제18권1호
    • /
    • pp.25-30
    • /
    • 2006
  • To enhance the stability of dispersed polyaniline (PANI) particles in a silicone oil system, a nonionic surfactant was adopted, and its effect on the electrorheological (ER) performance was investigated under an applied electric field. In the presence of a nonionic surfactant, the PANI based ER fluid exhibited not only an improved sedimentation stability based on the estimated sedimentation ratio but also an enhanced maximum yield stress behavior. Furthermore, the surfactant added ER suspension was applied to an ER damper system, and its damping performance was compared with the ER suspension without a surfactant.

ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석 (Maneuver Analysis of Full-vehicle Featuring Electrorheological Suspension and Electrorheological Brake)

  • 성금길;최승복
    • 한국소음진동공학회논문집
    • /
    • 제17권5호
    • /
    • pp.464-471
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological(ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

전도성 모델에 의한 인산에스테르셀룰로오즈 현탁액의 전기유변학적 특성 연구 (Electrorheological Properties of Cellulose Phosphate Ester Suspension by Conduction Models)

  • 최웅수;고영건;박용성;권오관
    • Tribology and Lubricants
    • /
    • 제17권2호
    • /
    • pp.124-129
    • /
    • 2001
  • The electrical and rheological behaviors of the cellulose phosphate ester suspension in the silicone oil were investigated. Cellulose phosphate ester suspension showed a typical ER response (Bingham flow behavior) upon application of an electric field. The shear stress for the cellulose phosphate ester suspension exhibited a linear dependence on the volume fraction of particles and a square power of the electric field. On the basis of the experimental results, cellulose phosphate ester suspension correlated with the conduction model of Tang et al, and found to be an ER fluid.

ER유체의 기계적 내구성 및 ER댐퍼의 성능고찰 (Mechanical Durability of ER Fluids and Performance Investigation of ER Dampers)

  • 박우철;최승복;정재천;서문석;강윤수;여문수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1044-1047
    • /
    • 1996
  • This paper presents durability characteristics of electrorheological(ER) fluids which undergo a reversible phase change depending upon the imposition of electric fields. The field-dependent Bingham properties are subjected to be altered from long time use of the ER fluid. The level of the changed properties depends upon employed device and test conditions. A piston-rod system which has same mechanism as ER dampers is adopted in this study and tested by increasing operation cycle up to 1 million. Bingham properties of initial and us ER fluids are tested and compared. In addition, these ER fluids are applied to ER damper in order to evaluate damping force performance.

  • PDF