• 제목/요약/키워드: EOF, 전기삼투 유동

검색결과 6건 처리시간 0.02초

마이크로 채널 내부 전기삼투 유동에 대한 PIV유동 해석 (Micro-PIV Analysis of Electro-osmotic Flow inside Microchannels)

  • 김양민;이상준
    • 한국가시화정보학회지
    • /
    • 제1권2호
    • /
    • pp.47-51
    • /
    • 2003
  • Microfluidic chips such as lab-on-a-chip (LOC) include micro-channels for sample delivery, mixing, reaction, and separation. Pressure driven flow or electro-osmotic flow (EOF) has been usually employed to deliver bio-samples. Having some advantages of easy control, the flow characteristics of EOF in microchannels should be fully understood to effectively control the electro-osmotic pump for bio-sam-pie delivery. In this study, a micro PIV system with an epifluorescence inverted microscope and a cooled CCD was used to measure velocity fields of EOF in a glass microchannel and a PDMS microchannel. The EOF velocity fields were changed with respect to electric charge of seeding particles and microchannel materials used. The EOF has nearly uniform velocity distribution inside the microchannel when pressure gradient effect is negligible. The mean streamwise velocity is nearly proportional to the applied electric field. Glass microchannels give better repeatability in PIV results, compared with PDMS microchannels which are easy to fabricate and more suitable for PIV experiments.

  • PDF

T자형 마이크로 채널 내부 전기삼투 유동의 불안정성 가시화 (Visualization of Electro-osmotic Flow Instability in a T-shape Microchannel)

  • 한수동;이상준
    • 한국가시화정보학회지
    • /
    • 제3권2호
    • /
    • pp.45-50
    • /
    • 2005
  • Electro-osmotic flow (EOF) instability in a microchannel has been experimentally investigated using a micro-PIV system. The micro-PIV system consisting of a two-head Nd:Yag laser and cooled CCD camera was used to measure instantaneous velocity fields and vorticity contours of the EOF instability in a T-shape glass microchannel. The electrokinetic flow instability occurs in the presence of electric conductivity gradients. Charge accumulation at the interface of conductivity gradients leads to electric body forces, driving the coupled flow and electric field into an unstable dynamics. The threshold electric field above which the flow becomes unstable and rapid mixing occurs is about 1000V/cm. As the electric field increases, the flow pattern becomes unstable and vortical motion is enhanced. This kind of instability is a key factor limiting the robust performance of complex electrokinetic bio-analytical devices, but can also be used for rapid mixing and effective flow control fer micro-scale bio-chips.

  • PDF

마이크로 채널 내 교류 전기삼투 현상을 이용한 유체 유동 및 혼합에 대한 수치해석적 연구 (A STUDY ON CHARACTERISTICS OF AC ELECTROOSMOTIC FLOWS AND MIXING IN A MICROCHANNEL WITH COPLANAR ELECTRODES)

  • 서용권;허형석
    • 한국전산유체공학회지
    • /
    • 제12권1호
    • /
    • pp.16-21
    • /
    • 2007
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device with AC electroosmotic flows (AC-EOF) around coplanar electrodes attached on the top and bottom walls. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. Experiment was performed to confirm the generation of the drift velocity around the electrodes. It was found that near the coplanar electrodes 3-D complex flows are generated. The AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

마이크로 채널 내부 전기삼투 유동의 Zeta-potential 계측 (Measurement of Zeta-potential of Electro-osmotic Flow Inside a Micro-channel)

  • 한수동;이상준
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.935-941
    • /
    • 2006
  • Many important properties in colloidal systems are usually determined by surface charge $({\zeta}-potential)$ of the contacted solid surface. In this study, ${\zeta}-potential$ of glass ${\mu}-channel$ was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass f-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The ${\zeta}-potential$ in the glass ${\mu}-channel$ was measured fur two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and f-potential in the glass surface was also studied. In the range of $0{\sim}6mM$, the surfactant SDS was added to NaCl solution in few different mole concentrations. As a result, the addition of SDS increases ${\zeta}-potential$ in the surface of the glass ${\mu}-channel$. The measured $\zeta-potential$ was found to vary from -260 to -70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The ${\zeta}-potential$ has a positive sign for the negative particles.

마이크로 채널 내 동일 평면 전극에 교류인가로 인한 유동특성 연구 (A STUDY ON CHARACTERISTICS OF Ac ELECTRO-OSMOTIC FLOWS IN THE MICROCHANNEL WITH COPLANAR ELECTRODES)

  • 허형석;강상모;서용권
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.163-166
    • /
    • 2006
  • This paper presents numerical results of fluid flows and mixing in a microfluidic device for AC electroosmotic flow (AC-EOF) with coplanar electrodes on top and bottom walls. Differently from previous EOF a channel which attached a couple of coplanar electrodes can be utilized to mix a target liquid with a reagent. In this study we propose a method of controlling fluid flows and mixing enhancement. To obtain the flow and mixing characteristics, numerical computations are performed by using a commercial code, CFX10. It was found that the flow near the coplanar electrodes is of 3-D complex flows and vortices between the other electrodes, and as a consequence the AC-electroosmotic flow on the electrodes plays an important role in mixing the liquid.

  • PDF

마이크로 채널 내부 전기삼투 유속 측정을 통한 유리표면의 Zeta-potential 측정 (Zeta-potential Measurement on Glass Surface by Measuring Electro-osmotic Velocity inside a Micro-channel)

  • 한수동;이상준
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2005년도 추계학술대회 논문집
    • /
    • pp.80-84
    • /
    • 2005
  • Many important properties in colloidal systems are usually determined by surface charge ($\zeta$-potential) of the contacted solid surface. In this study, $\zeta$-potential of glass $\mu$-channel was evaluated from the electro-osmotic velocity distribution. The electro-osmotic velocity inside a glass $\mu$-channel was measured using a micro-PIV velocity field measurement technique. This evaluation method is more simple and easy to approach, compared with the traditional streaming potential technique. The $\zeta$-potential in the glass $\mu$-channel was measured for two different mole NaCl solutions. The effect of an anion surfactant, sodium dodecyl sulphate (SDS), on the electro-osmotic velocity and $\zeta$-potential in the glass surface was also studied. In the range of $0\∼6$mM, the surfactant SDS was added to NaCl solution in four different mole concentrations. As a result, the addition of SDS increases $\zeta$-potential in the surface of the glass $\mu$-channel. The measured $\zeta$-potential was found to vary from-260 to-70mV. When negatively charged particles were used, the flow direction was opposite compared with that of neutral particles. The $\zeta$-potential has a positive sign for the negative particles.

  • PDF