• Title/Summary/Keyword: ENERGY SAVING REPLACEMENT

Search Result 25, Processing Time 0.023 seconds

A case study of life cycle cost analysis on high pressure sodium lamp and LED lamp for tunnel lighting (터널 조명 고압나트륨램프와 LED램프의 LCC 분석 사례 연구)

  • Lee, Gyu-Phil;Kim, Jeong-Heum
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.5
    • /
    • pp.315-323
    • /
    • 2021
  • Tunnel is the most energy-consuming structure in road due to the characteristic of using artificial lighting during day and night. Therefore, tunnel lights are being replaced by LED lamp that have advantages with respect to low power consumption. The best use of social overhead capital can be expected by considering the life cycle cost, because to tunnel structures are accompanied by a series of medium-to-long-term and continuous processes of replacing auxiliary facilities. In this study, the saving effect by LCC analysis was quantitatively analyzed by replacing tunnel light sources from high-pressure sodium lamps to LED lamps. The effect of reducing the replacement cycle by increasing the life of the lamps and the resulting maintenance cost is very significant, on replacing tunnel lighting light sources with LED lamp.

Thermal Conductivity and Pore Characteristics of Low-Temperature Sintered Lightweight Aggregates Mode from Waste Glass and Bottom Ash (바텀애쉬와 폐유리를 사용하여 제조한 저온소성 경량골재의 열전도율과 기공특성)

  • Lee, Han-Baek;Ji, Suk-Won;Seo, Chee-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.851-858
    • /
    • 2010
  • In this study, waste glass and bottom ash were used as basic materials in order to secure a recycling technology of by-products which was mostly discarded and reclaimed. In addition, because softening point of waste glass is less than $700^{\circ}C$ and bottom ash includes combustible material, it was possible to manufacture low-temperature sintering lightweight aggregates for energy saving at $800{\sim}900^{\circ}C$ that it is as much as 20~30% lower than sintering temperature of existing lightweight aggregates. Thermal conductivity of newly-developed lightweight aggregates was 0.056~0.105W/m. K and its porosity was 40.36~84.89%. A coefficient of correlation between thermal conductivity and porosity was -0.97, it showed very high negative correlationship. With this, we were able to verify that porosity is key factor to affect thermal conductivity. Microstructure of lightweight aggregates by $CaCO_3$ content and replacement ratio of bottom ash in the variation of temperature were that $CaCO_3$ content increased along with pore size while replacement ratio of bottom ash increased as pore size decreased. Specially, most pores were open pore instead of closed pore of globular shape when replacement ratio of bottom ash was 30%, and pore size was small about 1/10~1/5 as compared with case in bottom ash 0~20%. In addition, open pore shapes were remarkably more irregular form of open pore in $900^{\circ}C$ than $700^{\circ}C$ or $800^{\circ}C$ when replacement ratio of bottom ash was 30%. We reasoned hereby that these results will influence on absorption increase, strength and thermal conductivity decrease of lightweight aggregates.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

Analysis of Heating Characteristics of Multi-Layered Insulation Curtain with Silica Aerogel in Greenhouses (실리카 에어로겔을 이용한 다겹보온커튼의 온실 난방 특성 분석)

  • Jin, Byung-Ok;Kim, Hyung-Kweon;Ryou, Young-Sun;Lee, Tae-Seok;Kim, Young-Hwa;Oh, Sung-Sik;Kang, Geum-Choon
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.320-325
    • /
    • 2020
  • This study aimed to analyze thermo-keeping and economic feasibility by utilizing silica aerogel, which has been attracting attention as a new material, complementing the disadvantages of the conventional multi-layered thermal screen, and producing and installing multi-layered thermal screen. The multi-layered thermal screen used in the experiment was produced in two combinations using a non-woven fabric containing silica aerogel and measured and compared the temperature and fuel consumption changes due to differences in practice with the multi-layered thermal screen being sold and used on the market. Experimental results show that the temperature and relative humidity changes due to the differences of the multi-layered thermal screens in the single-span greenhouse and the multi-span greenhouse were small but remained almost the same temperature and relative humidity. It is judged that this shows that the multi-layered thermal screen using silica aerogel is not inferior to the conventional multi-layered thermal screen. As a result of a comparative analysis of heating energy, the aerogel-based multi-layered thermal screen reduced fuel consumption by about 15% in the single-span greenhouse and about 20% in the multi-span greenhouse compared to the conventional multi-layered thermal screen. It is clear that heating energy is saved as a greenhouse size and duration increase. It was found that the silica aerogel-based multi-layered screen was more breathable and warmer than the conventional multi-layered thermal screen, but It was found that the multi-layered screen used in the multi-span greenhouse was heavier and stiff compared with the conventional multi-layered thermal screen, indicating less workability and operability. Therefore, improvements were applied to the multi-layered screens used in the single-span greenhouses. It was confirmed that the replacement of internal insulation materials reduced thickness and improved stiffness so that there could be sufficient possibility for farmers to use.

An Analysis of Velocity Patterns and Improvement Effect after Application of Domestic Roundabout Design Guidelines (Focusing on Busan Metropolitan City) (국내 회전교차로 설계지침 적용에 따른 속도패턴과 개선효과 분석 - 부산광역시를 중심으로 -)

  • Lim, Chang-Sik;Choi, Yang-Won
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.305-316
    • /
    • 2013
  • To find out if modern roundabout is still effective under drivers behavior and driving conditions in Busan Metropolitan City, the effects before and after introduction of roundabout were analyzed. According to analysis on velocity profile at roundabout, velocity deviation decreased, and average vehicle speed was close to design speed. As a result, it has been confirmed that most roundabouts were properly built. In terms of traffic operation, average vehicle speed improved by 87.2% when a traffic intersection was replaced by a roundabout. therefore, it has been found out that the introduction of roundabout has a positive effect on increasing vehicle speed by reducing traffic congestion. In addition, annual benefits expected from the replacement from a traffic intersection to a roundabout were KRW 872 million as follows; KRW 410 million in traffic communication, KRW 39 million in transportation safety, KRW 255 million in energy saving, KRW 95 million in reduction of air pollution and KRW 73 million in reduction of traffic signal installation cost. In other words, if 10% (193 spots) of all traffic intersections (1,926 spots in total) in Busan City are replaced by roundabouts, the municipal authority would be able to save about KRW 168.3 billion. According to analysis on the benefits expected from the installation of roundabouts compared to the investment cost for traffic intersections, about KRW 679 million could be saved per roundabout. Considering 10% of all traffic intersections in the City of Busan, about KRW 131 billion could be saved annually. The traffic accidents in roundabout usually occur because drivers aren't aware of right-of-way rules. Once the right-of-way rules settle, the number of traffic accidents would significantly decrease. In addition, it is urgent to promote education and campaign for drivers, pedestrians and bikers on the roundabout.