• Title/Summary/Keyword: EN15227

Search Result 3, Processing Time 0.022 seconds

An overview of the structural requirements of passenger carrying rolling stock according to EN12663 and prEN15227 (EN12663과 prEN15227에 따른 객차의 구조적 요구사항 검토)

  • Ainoussa, Amar;Chang, D.S.;Paik, J.S.
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.816-823
    • /
    • 2007
  • As the South Korean rolling stock industry is developing designs for full compliance with the European Standards, it is fitting to take a look at these two core standards. The paper presents an overview of the load cases and structural requirements developed in Europe for the design of safe and compatible rolling stock vehicles. These load cases and structural requirements have been compiled into two standards namely EN12663 and EN15227. Standard EN12663 was developed as a reference design requirements standard. The work was mandated and sponsored by the European Committee for Standardization and Standard issuing National Institutions. EN12663 specifies a series of proof and fatigue load cases for European rolling stock regulations compliant vehicle designs. As EN12663 does not address the crashworthiness issue, a dedicated crashworthiness standard, EN15227, was therefore developed in a similar manner through industry wide consultations managed by a Trans-European working group of experienced engineers and specialists. In both standards, the vehicle and/or trains are grouped into categories reflecting the vehicle types and/or their indented operational function. EN15227, developed to complement EN12663, addresses the "passive" crashworthiness capability of the vehicles and trains. EN15227 specifies reference crash scenarios similar to those found in the Technical Specification for Interoperability (TSI) of high speed trains operating in Europe. The overview also touches on a general comparison with the corresponding British Group Standard (GM/RT2100) and also the UIC leaflet based load cases. The exercise is extended to pertinent design load cases specified by the Federal Railroad Administration (FRA) in the US.

  • PDF

Study on Obstacle Deflector of a Railway Vehicle Using Tension-type Energy Absorbers (인장형 에너지흡수부재를 이용한 철도차량용 장애물제거기 연구)

  • Kim, Hongeik;Kim, Jinsung;Kwon, Taesoo;Jung, Hyunseung
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.2
    • /
    • pp.173-181
    • /
    • 2017
  • The obstacle deflector sweeps obstacles off the track or absorbs crash energy with an energy absorber to prevent derailment of a train and to minimize damage and casualties after an accident. In this study, an obstacle deflector and its operational mechanism were designed with a tension-type energy absorber and a 4-bar linkage system. Also, a test method was suggested and verified with FEA (Finite Element Analysis) and UTM (Universal Test Machine) for testing of the static load and energy absorbing ability according to EN 15227 regulations. Through this study, an obstacle deflector that meets the EN 15227 standard was designed and a test method was suggested to adjust the collapse load easily and to verify it experimentally according to the design and verification procedure of the obstacle deflector.

A Study on Design and Dynamic Characteristics of Tearing Tubes Applied in Tram (트램용 테어링 튜브 에너지흡수부재 설계와 동적 특성 연구)

  • Choi, Jiwon;Kwon, Taesoo;Jung, Hyunseung;Kim, Jinsung;Kwak, Jaeho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.5
    • /
    • pp.524-536
    • /
    • 2015
  • The paper aims to design and verify tearing tube type energy absorption device applied in tram to ensure safety in case of collision accident. Energy capacity of tearing tube is determinated based on EN15227 and Standard Collision Scenarios Criterion in Detail in Republic of Korea. Tearing tube is designed based on theoretical model suggested by X.Huang et al. and assumption by T.Y. Reddy et al. Real scale collision tests are conducted to analyze the energy absorption characteristics and deformation mode. Bending of curl tips is absorbed collision energy when curl tips and tube body are contacted to each other from the tests and we suggest and include the formula on bending of curl tips in theoretical model.