• Title/Summary/Keyword: EMTP/RV

Search Result 81, Processing Time 0.04 seconds

Dynamic Characteristics Analysis of the DC-BUS based micro-grid model for the EMTP Development (DC-BUS 기반 마이크로그리드의 동특성 해석을 위한 EMTP 모델 개발)

  • Lee, Mog-Hyung;Baek, Young-Sik;Jyung, Tae-Young;Kwon, Kyung-Ha;Park, Ji-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.246_247
    • /
    • 2009
  • 본 논문에서는 여러 가지 과도현상 해석 프로그램 중 하나인 EMTP-RV시뮬레이터를 이용하여 태양전지와 연료전지에 의해 각각 발생되어진 에너지원을 공통의 DC-BUS에 연계하여 운전하는 마이크로 소스와 마이크로그리드를 모델링하였다. 또한 사례 연구를 통해 마이크 로그리드의 운전형태와 부하변동에 따른 마이크로소스의 동특성을 분석하였다.

  • PDF

EMTP Simulation for the Dynamic Analysis of a STATCOM-Shunts-OLTC Coordination in Substation (변전소 조상 설비간의 협조 제어를 위한 EMTP 과도해석모형 개발)

  • Jeong, Ki-Seok;Baek, Young-Sik;Park, Ji-Ho;Chang, Byung-Hoon;Lee, Hyun-Chul;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.237_238
    • /
    • 2009
  • This paper proposes coordinative control method between STATCOM installed within substation and other reactive power resources including Shunt Reactors and Shunt Capacitors and OLTC. Voltage/Reactive power control has various difficult aspects to control because of analysis and system dynamics error. This coordinative control method suggests practical algorithm regarding system voltage and reactive power status which is easy to implement in substation basis. In normal status, STATCOM-Shunts-OLTC are in operation. The proposed algorithm is tested and verified in EMTP/RV. And this is expected to be applied to control multiple reactive power devices combined with SCADA/EMS system.

  • PDF

Study on Advanced Frequency Estimation Technique using Gain Compensation

  • Park, Chul-Won;Shin, Dong-Kwang;Kim, Chul-Hwan;Kim, Hak-Man;Kim, Yoon-Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • Frequency is an important operating parameter for the protection, control, and stability of a power system. Thus, it must be maintained very close to its nominal frequency. Due to the sudden change in generation and loads or faults in a power system, however, frequency deviates from its nominal value. An accurate monitoring of the power frequency is essential for optimum operation and prevention of wide area blackout. Most conventional frequency estimation schemes are based on the DFT filter. In these schemes, the gain error could cause defects when the frequency deviates from the nominal value. We present an advanced frequency estimation technique using gain compensation to enhance the DFT filter-based technique. The proposed technique can reduce the gain error caused when the frequency deviates from the nominal value. Simulation studies are performed using both the data from EMTP-RV software and the user-defined arbitrary signals to demonstrate the effectiveness of the proposed algorithm. Results show that the proposed algorithm achieves good performance under both steady state tests and dynamic conditions.

Comparative Studies of Frequency Estimation Method for Fault Disturbance Recorder (고장 왜란 기록기를 위한 주파수 추정 기법의 비교 연구)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.87-92
    • /
    • 2012
  • Voltage and current phasor estimation has been executed by GPS-based synchronized PMU, which has become an important way of wide-area blackout protection for the prevention of expending faults in a power system. The PMU technique can not easily get the field data and it is impossible to share information, so that there has been used a FNET(Frequency Monitoring Network) method for the wide-area intelligent protection in USA. It consists of FDR(Fault Disturbance Recorder) and IMS(Information Management System). Therefore, FDR must provide an optimal frequency estimation method that is robust to noise and failure. In this paper, we present comparative studies for the frequency estimation method using IRDWT(Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and DFT(Discrete Fourier Transform). The Republic of Korea345[kV] power system modeling data by EMTP-RV are used to evaluate the performance of the proposed two kinds of RDWT(Recursive Discrete Wavelet Transform) and DFT. The simulation results show that the proposed frequency estimation technique using FRDWT could be the optimal frequency measurement method, and thus be applied to FDR.

Algorithm for Fault Detection and Classification Using Wavelet Singular Value Decomposition for Wide-Area Protection

  • Lee, Jae-Won;Kim, Won-Ki;Oh, Yun-Sik;Seo, Hun-Chul;Jang, Won-Hyeok;Kim, Yoon Sang;Park, Chul-Won;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.729-739
    • /
    • 2015
  • An algorithm for fault detection and classification method for wide-area protection in Korean transmission systems is proposed. The modeling of 345-kV and 765-kV Korean power system transmission networks using the Electro Magnetic Transient Program - Restructured Version (EMTP-RV) is presented and the algorithm for fault detection and classification in transmission lines is developed. The proposed algorithm uses the Wavelet Transform (WT) and Singular Value Decomposition (SVD). The Singular value of Approximation coefficient (SA) and part Sum of Detail coefficient (SD) are introduced. The characteristics of the SA and SD at the fault conditions are analyzed and used in the algorithm for fault detection and classification. The validation of the proposed algorithm is verified by various simulation results.

Performance Evaluation of Advanced Frequency Estimation Technique using 765kV Modeling Data (765kV 모델링 데이터에 의한 개선된 주파수 추정기법의 성능 평가)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.253-257
    • /
    • 2010
  • The frequency is an important operation parameter for the control, protection, and stability of a power system. The frequency as a key index of power quality can be indicative of system abnormal conditions and disturbances. Due to the sudden change in generation and loads or faults in power system, the frequency is supposed to deviate from its nominal value. It is essential that the frequency must be maintained very close to its nominal frequency. An accurate monitoring of the power frequency is essential to optimal operation and prevention for wide area blackout. As most conventional frequency estimation schemes are based on DFT filter, it has been pointed out that the gain error could cause defects when the frequency is deviated from nominal value. This paper presents an advanced frequency estimation technique using gain compensation to improve the performance of DFT filter based techniques. To evaluate performance of the proposed algorithm, the 765kV T/L system in Korea is simulated by EMTP-RV software. The proposed technique can reduce the gain error caused when the power system frequency deviates from nominal value.

Analysis of Transient Voltage by Lightning Stroke at 345kV Step-up Transformer (345kV 승압용 변전소의 뇌격에 의한 이상전압 해석)

  • Cho, Man-Young;Shin, Ho-Jeon;Huh, Jae-Sun;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.95-101
    • /
    • 2012
  • Typically, large scale power generation facilities are linked to 345kV transmission line through a step-up transformer. If the value of transient voltage by generating lightning stroke is large more than electric equipment's BIL, devices insulation is destroyed. LA(Lighting Arrester) is used as a main means of prevention. However, the installation of LA takes the constraints of installation place and expensive installation costs. Therefore, we need to carefully study whether installation of installation can be omitted and the most efficient place of installation. In this paper, we simulated the transient voltage detected by lightning stroke at each equipments in the 345kV transmission power grid by using EMTP-RV program.

Effect Analysis of Generator Dropping Using Wavelet Singular Value Decomposition (발전기 탈락 시 Wavelet Transform과 Singular Value Decomposition을 이용한 특성 분석)

  • Noh, Chul-Ho;Kim, Won-Ki;Han, Jun;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.49-50
    • /
    • 2011
  • 본 논문에서는 WT(Wavelet Transform)와 SVD(Singular Value Decomposition)를 함께 사용한 WSVD(Wavelet Singular Value Decomposition)를 이용하여 발전기 탈락 시의 전압 변동 특성을 분석하였다. WSVD 특성 분석을 위해 부산 지역의 345kV급 송전계통을 EMTP-RV로 모델링하였으며, 이 계통모델에서 발전기 탈락을 모의하였다. MATLAB을 통해 이 때 측정된 전압의 WSVD를 계산하여 발전기 탈락에 따른 특성을 분석하였다.

  • PDF

An Algorithm for Fault Classification and Detection of Generator Dropping Using Wavelet Singular Value Decomposition (Wavelet Singular Value Decomposition을 이용한 고장 판별 및 발전기 탈락 검출 알고리즘)

  • Kim, Won-Ki;Han, Jun;Lee, Jae-Won;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.205-206
    • /
    • 2011
  • In this paper, algorithm for fault classification and detection of generator dropping using wavelet singular value decomposition (WSVD) is proposed. Busan area upper 345kV is modeled and generator dropping is simulated in EMTP-RV. Characteristic of generator dropping is analyzed and this algorithm is deducted by calculating WSVD in MATLAB.

  • PDF

Analysis of Switching Surge in Distribution System with Photovoltaic Generation System (태양광 발전 연계 계통에서 개폐서지 해석)

  • Seo, Hun-Chul;Kim, Chul-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.698-699
    • /
    • 2011
  • This paper analyzes the switching surge in distribution system with photovoltaic (PV) generation system. The change of overvoltage by PV generation system is analyzed using lattice diagram. To verify the analysis results, the distribution system with PV generation system is modeled using EMTP-RV and the various simulations are performed.

  • PDF