• Title/Summary/Keyword: EMTP/RV

Search Result 81, Processing Time 0.028 seconds

A Study on the D-Q Control based Output Voltage Control Algorithm and EMTP-RV Simulation of Three-phase 6-Pulse PWM Rectifier (3상 6펄스 PWM 정류기의 D-Q 제어 기반 출력전압 제어 알고리즘 및 EMTP-RV 시뮬레이션 연구)

  • Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.1
    • /
    • pp.45-52
    • /
    • 2021
  • The space vector control based voltage control method for a three-phase PWM rectifier requires a lot of effort to design an optimal switching pattern since a switching pattern for the switching section must be designed. In this study, a D-Q control based SPWM output voltage control algorithm was studied for the three-phase six-pulse CVS type rectifier. In the output voltage control algorithm, three-phase reference signals are obtained from the D-Q transformation based on the space vector representation method, instead of the switching pattern, SPWM method is used to generate rectifier switching control signals. Next, a three-phase six-pulse CVS PWM rectifier based on D-Q transformation and SPWM was modeled using EMTP-RV. Finally, the validity of the D-Q control-based SPWM voltage control algorithm was confirmed by comparing the output voltage waveform obtained through EMTP-RV simulation works with a reference value and confirming that the output voltage accurately follows the reference voltage.

22.9kV GIS Modeling and Transient Recovery Voltage Analysis Using EMTP/RV (EMTP/RV를 이용한 22.9kV GIS 모델링과 과도회복전압 해석)

  • Jyung, Tae-Young;Baek, Young-Sik;Jeong, Ki-Seok;Park, Ji-Ho;Seo, Gyu-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1199-1205
    • /
    • 2010
  • The recent power system is required to a large size of facilities and high power technology according to increasing power demand. However, it could lead to spoiling the beauty of city and environment problem. The miniaturized facilities with large capacity such as GIS have been required in recent power system. The GIS(Gas Insulated Substation) using the SF6 insulation gas enables to miniaturize facilities with large capacity with high insulation performance. However, the substation installed GIS has required to new design model which is different from the conventional substation. The TRV(Transient Recovery Voltage) analysis on simple circuit may applied by differential equation. However, in case of relatively complicated system, EMTP(Electro Magnetic Transients Program) mainly has been used to design and simulate for transient analysis. This paper mainly design the 22.9 kV GIS system and analyze the transient recovery voltage of main circuit breaker using EMTP/RV. It also enables to easily design the other substation installed GIS with same maker and voltage level because the proposed GIS model consists of separated modules such as busbar, circuit breaker, bushing, CT, PT etc. Eventually, it contributes to comfortably compare the interrupting performance of circuit breaker and system TRV corresponding to the substation system configuration.

A Study on the Circuit Breaker Transient Recovery Voltages on Large Commercial Customer using EMTP-RV Program (EMTP-RV를 이용한 대용량 전기설비의 차단기 TRV에 관한 연구)

  • Cho, Kyeh-Sool;Choi, Hong-Kyoo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.59-66
    • /
    • 2011
  • In electric power system, the circuit breaker is not operated when the higher voltage then the rated TRV(transient Recovery Voltage) appeared in the circuit breaking, The TRV of a circuit breaker means the characteristics of reignition by the arc between two poles. and is decided by the value of connecting Impedance. In this paper we of carried out many kinds of experiments varying the types of bus, the types of installation, the length of installation between 22.9 [kV] level circuit breaker and MTR in general 154/22.9[kV] system, We also simulated the characteristics of TRV using EMTP-RV program. The suitability of TRV in assessed by Uc, RRRV(Rate of Rise of Recovery Voltage) which are defined by the international guide, IEC62271-100. The values of RRRV gained from the cable-made bus are 590[%] lesser than those from the NSPB-made bus respectively. So the triangled type is more rational in the aspect of TRV.

Implementation Simulation and Modelling of HVDC using EMTP-RV (EMTP-RV를 이용한 HVDC 시스템 모델링 및 시뮬레이션 구현)

  • Chang, Chin-Young;Kim, Jae-Moon;Kim, Yang-Soo;Kim, Cheol-Hwan;Yu, Yeong-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2008.04b
    • /
    • pp.182-184
    • /
    • 2008
  • HVDC 시스템은 장거리 교류 송전 선로에서 생기는 전력시스템 안전성 문제나 전력손실의 문제를 해결하여 주는 기술적인 해결책이 될 뿐만 아니라 빠른 전력조류제어를 통하여 조류의 흐름을 능동적으로 제어할 수 있는 장점을 가지고 있다. 본 논문은 GUI 구현이 강한 EMTP-RV를 이용한 제주-해남 HVDC 시스템의 모델링을 확립하고 과도현상을 분석하기 위한 선행연구로 정상상태에 따른 시뮬레이션을 구현하였다.

  • PDF

Analysis of Magnitude and Rate-of-rise of VFTO in 550 kV GIS using EMTP-RV

  • Seo, Hun-Chul;Jang, Won-Hyeok;Kim, Chul-Hwan;Chung, Young-Hwan;Lee, Dong-Su;Rhee, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • Very Fast Transients (VFT) originate mainly from disconnector switching operations in Gas Insulated Substations (GIS). In order to determine the rate-of-rise of Very Fast Transient Overvoltage (VFTO) in a 550 kV GIS, simulations are carried out using EMTP-RV. Each component of the GIS is modeled by distributed line model and lumped model based on equivalent circuits. The various switching conditions according to closing point-on-wave and trapped charge are simulated, and the results are analyzed. Also, the analysis of travelling wave using a lattice diagram is conducted to verify the simulation results.

Derivation of Generator Capability Curve using EMTP-RV (EMTP-RV를 이용한 발전기 용량 곡선 도출)

  • Kim, Kwang-Hyun;Park, Ji-Kyung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Kim, Cheol-Hwan;Lee, Woon-Hee;Yang, Jeong-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.575-576
    • /
    • 2015
  • It is important to coordinate generator protection with generator control to operate generator safely and effectively. This paper discusses specific calculation methods that can be used to obtain Generator Capability Curve (GCC). It also provides GCC for example generator using ElectroMagnetic Transients Program-Restructured Version (EMTP-RV).

  • PDF

Switching Surge Analysis of Cable Line using EMTP-RV (EMTP-RV를 이용한 케이블 선로에서의 개폐서지 분석)

  • Bang, S.H.;Seo, H.C.;Yeo, S.M.;Kim, C.H.;Yoo, Y.S.;Cho, B.S.;Lee, C.H.;Bae, M.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.638-639
    • /
    • 2007
  • 본 논문에서는 EMTP-RV를 이용하여 선로가압 시 발생하는 개폐서지에 대해 분석하였다. 신안산S/S$\sim$남안산S/S의 154kV 지중케이블 2회선 실계통 선로 모델을 구성하여 부하단의 크기 변화에 따른 조건으로 시뮬레이션 하였으며 그 결과를 분석하였다.

  • PDF

Modeling of Transformer Inrush Current on Jeju Power System using EMTP (EMTP를 이용한 제주계통의 여자돌입전류 모델링)

  • Seo, H.C.;Yeo, S.M.;Kim, C.H.;Lyu, Y.S.;Cho, B.S.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.95-97
    • /
    • 2007
  • Transformer inrush current can cause the voltage drop by source impedance. The accurate modeling and analysis for inrush current is first step to limit the inrush current and improve the power qualify. This paper presents the modeling of transformer inrush current by EMTP-RV using Jeju power system, Korea. The method to model the hysteresis curve of transformer in EMTP-RV is discussed. Simulations demonstrate the verification of modeling of inrush current by comparing the data recorded in field with simulation values and analyzing the harmonics of inrush current.

  • PDF

EMTP Modeling and Dynamic Analysis of Microturbine Based Microsource for Application to Microgrid (마이크로그리드 적용을 위한 마이크로터빈 기반 마이크로소스의 EMTP 모델링과 동특성 시뮬레이션)

  • Jyung, Tae-Young;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.42-48
    • /
    • 2009
  • Microgrid supplies loads with power interconnected grid. And it is defined a independent power system compounded micro sources over two devices which have enough capacity to operate independently, storage devices and loads. The energy sources of micro source have different dynamic characteristics corresponding to classes and application skills. However their transient responses are various from a few seconds to minutes. Therefore it is limitation for understanding operation characteristics of microsource modeling constant voltage source or constant current source. This paper shows that we designed EMTP/RV model of micro source which is microturbine based energy source. And we performed dynamic analysis of micro source corresponding to operation mode of microgrid.

Application Method and EMTP-RV Simulation of Series Resonance Type Fault Current Limiter for Smart Grid based Electrical Power Distribution System (스마트 그리드 배전계통을 위한 직렬 공진형 한류기 적용 방법 및 EMTP-RV 시뮬레이션 연구)

  • Yun-Seok Ko;Woo-Cheol Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.361-370
    • /
    • 2024
  • In this paper, a method was studied for applying a series resonant type fault current limiter that can be manufactured at low cost to the smart grid distribution system. First, the impact of the harmonic components of the short-circuit fault current injected into the series resonance circuit of the fault current limiter on the peak value of the transient response was analyzed, and a methodology for determining the steady-state response was studied using percent impedance-based fault current computation method. Next, the effectiveness of the method was verified by applying it to a test distribution line. The test distribution system using the designed current limiter was modeled using EMTP_RV, and a three-phase short-circuit fault was simulated. In the fault simulation results, it was confirmed that the steady-state response of the fault current accurately followed the design target value after applying the fault current limiter. In addition, by comparing the fault current waveform before and after applying the fault current limiter, it was confirmed that the fault current was greatly suppressed, confirming the effect of applying the series resonance type current limiter to the distribution system.