• Title/Summary/Keyword: EMT-6 cell

검색결과 37건 처리시간 0.029초

Mercury Chloride가 마우스 복강대식세포 및 EMT-6 세포의 Nitric Oxide 생성에 미치는 영향 (Effects of Mercury Chloride on Nitric Oxide Syntheses in Mouse Peritoneal Macrophage and EMT-6 Cell)

  • 권근상;고대하;기노석;염정호
    • Journal of Preventive Medicine and Public Health
    • /
    • 제30권2호
    • /
    • pp.369-380
    • /
    • 1997
  • Balb/c 마우스의 복강대식세포와 동종 마우스의 유선암에서 기원한 EMT-6 세포를 배양하는 조건에 여러 농도의 수은을 첨가하여 nitrite와 nitrite 생성의 변화를 관찰한 결과는 다음과 같다. 복강대식세포 및 EMT-6 세포가 생성하는 nitrite와 nitrate 양은 공히 배양시작 12시간 후에 생성량에 비해 24 시간 후에는 2배, 36시간 후에는 3배의 농도로 측정되었다. 이때 nitrite와 nitrate 농도 사이에 매우 밀접한 상관관계가 관찰되었다. 수음첨가에 따라 nitrite 및 nitrate 생성량은 용량 의존적 관계로 현저한 감소를 보이며, 24 시간 또는 36시간 후의 세포생존률도 역시 수은농도에 비례하여 감소되는데, 복강대식세포의 생존률 감소가 EMT-6 세포의 것에 비해 더욱 현저하였다. 이들 세포내에서 생성되는 ATP의 양은 복강세포의 경우 그 생존률과 비례하는 경향이었으나, EMT-6세포의 경우는 비교적 높은 생존률에도 불구하교 배양액내에 수은농도를 증가시킴에 따라 ATP생산은 현저히 감소하였다. 이상의 결과는 면역세포인 복강대식세포 뿐아니라 암세포인 EMT-6 세포에서도, L-arginine으로부터 nitric oxide를 생성하는 생화학적 반응이 수은에 의해 공히 억제될 수 있음을 보여준다. 한편 수은의 세포성 면역에 미치는 독성은 수은이 면역세포의 ATP생성과 관련한 에너지 대사과정의 장애을 초래하여 nitric oxide 생성에 필요한 반응에너지의 공급을 억제시키기 때문에 나타나는 현상으로 사료된다.

  • PDF

Emerging paradigms in cancer cell plasticity

  • Hyunbin D. Huh;Hyun Woo Park
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.273-280
    • /
    • 2024
  • Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions.

EMT 억제를 통한 멜리틴의 폐암세포 이동 및 침투 억제 효과 (Melittin inhibits cell migration and invasion via blocking of the epithelial-mesenchymal transition (EMT) in lung cancer cells)

  • 조현지;정윤정;김문현;정일경;강동욱;장영채
    • 한국식품과학회지
    • /
    • 제50권1호
    • /
    • pp.105-110
    • /
    • 2018
  • 멜리틴은 봉독의 주요 성분 중 하나로 항염증과 항암활성 효과를 가지고 있다. 우리는 폐암세포에서 멜리틴이 EMT 억제를 통해 암세포 이동과 침투를 억제하는 사실을 확인하였다. 멜리틴은 EGF로 유도된 폐암 세포 이동과 침투를 억제하였을 뿐만 아니라 EMT와 관련된 단백질인 이카드헤린의 발현을 증가시켰으며, 바이멘틴과 피브로넥틴 발현은 감소시켰다. 또한 멜리틴에 의한 EMT조절 전사인자인 ZEB2, Slug, Snail의 발현을 확인한 결과 멜리틴 처리에 의해 농도의존적으로 발현이 감소하였다. 또한 작용 메커니즘을 확인하기 위해 mTOR와 FAK 메커니즘을 확인한 실험에서 EGF 처리에 의해 증가한 AKT, mTOR, p70S6K, 4EBP1의 인산화가 멜리틴 농도의존적으로 감소하였다. 그러나 FAK는 EGF에 의해 변화가 없었으며, EKR, JNK 메커니즘은 EGF 처리에 의해 인산화가 증가하였으나 멜리틴 처리에 의해 아무런 영향을 받지 않았다. 그러므로, 폐암세포의 세포 이동과 침투에 대한 멜리틴의 억제효과는 AKT/mTOR/P70S6K/4EBP1 기전 억제를 통해 EMT를 억제하여 세포 이동과 침투를 억제하는 것으로 보인다.

수은에 의한 EMT-6 세포의 $NO_2^-$ 및 ATP 생성 ($NO_2^-$ and ATP synthesis in the EMT-6 cell stimulated by mercury chloride)

  • 오경재;고대하;염정호
    • Journal of Preventive Medicine and Public Health
    • /
    • 제29권3호
    • /
    • pp.495-505
    • /
    • 1996
  • 수은이 세포성 면역반응에 미치는 효과와 그 기전을 밝히기 위해 cytokine-EMT-6 cell-NO 모형에 대조군에는 수은을 첨가하지 않았고 나머지 실험군에는 $0.05-0.8{\mu}M$의 mercury chloride를 처리하였다. 그리고 배양시간별, 수은농도별로 세포생존율, 세포성 면역의 지표인 NO를 nitrite로 간접정량하고 대사과정에 필수 에너지요소인 nitrite를 측정한 결과는 아래와 같이 요약된다. 1. EMT-6세포의 세포생존율은 대조군과 36시간째 $0.8{\mu}M(89.50%)$을 제외한 모든 수은첨가군에서 모두 90%이상의 값을 나타내었으며, 배양시간 및 첨가한 수은농도별 군간 차이는 없었고 모든 수은첨가군과에서 대조군에 비해 큰 차이가 없었다. 2. 수은에 노출된 EMT-6 세포의 nitrite 생성량 및 ATP생성량은 배양시간의 경과에 따라 전반적으로 증가하였으며 시간경과에 따른 nitrite 생성량과 ATP 생성량은 첨가한 수은농도의 변화에 따라 각 군간에 현저한 차이를 보였다. 그리고 시간경과의 영향을 보정한 상태에서도 첨가한 수은농도의 변화에 따라 각 군간 차이는 모두 현저하게 나타났다. 한편, Nitrite 생성량과 ATP 생성량은 둘 다 수은첨가군 모두에서 대조군의 값에 비해 현저하게 낮았고, 첨가된 수은농도와 nitrite 생성량 및 ATP 생성량 사이에는 높은 음의 상관관계가 있어 수은농도의 증가에 따라 용량-반응의 관계(dose-dependent)로 감소하는 경향을 보였다. 이상의 결과, 배양조건에 수은의 첨가로 인하여 nitrite 생성량과 ATP 생성량이 동시에 감소하는 바, 수은에 의한 세포성 면역의 저하는 면역세포의 NO 생성량의 감소에 의한 것으로 사료되며, 이는 수은이 세포내 에너지생산에 관련된 대사과정을 억제시키므로 나타나는 결과라고 판단된다.

  • PDF

유방암 세포(EMT6) 이식 마우스에서 녹차폴리페놀 음용이 시스플라틴의 암 조직 성장 억제에 미치는 영향 (Effects of Dietary Tea Polyphenol on Tumor Growth Inhibition by Cisplatin in EMT6 Breast Tumor-bearing Mice)

  • 이병래;조정일;박평심
    • 한국식품영양과학회지
    • /
    • 제43권1호
    • /
    • pp.47-54
    • /
    • 2014
  • 본 연구는 녹차폴리페놀이 시스플라틴의 항암작용과 신장 독성에 미치는 영향을 유방암 세포(EMT6)와 암세포 이식마우스를 이용하여 in vitro와 in vivo 실험으로 관찰하였다. 배양한 EMT6 세포에서 녹차폴리페놀은 시스플라틴에 의한 세포 독성을 증가시켰다. 마우스에 EMT6 세포를 주사하여 유발된 종양의 크기가 시스플라틴군(CP)보다 시스플라틴+녹차폴리페놀군(CP+GTP)에서 유의하게 작았고, 종양조직 p53와 caspase-3 활성화가 시스플라틴군(CP)보다 시스플라틴+녹차폴리페놀군(CP+GTP)에서 유의하게 높았으며, 신장 GGT와 AP 활성은 시스플라틴군(CP)보다 시스플라틴+녹차폴리페놀군(CP+GTP)에서 유의하게 높았고, 신장 조직학적 소견에서 신세뇨관 확장과 괴사가 시스플라틴군(CP)보다 시스플라틴+녹차폴리페놀군(CP+GTP)에서 유의하게 낮았다. 이상의 결과 녹차폴리페놀은 EMT6 유방암 세포를 이용한 in vitro 및 in vivo 실험에서 시스플라틴의 항암작용을 증강시키면서 신장에 대한 독성 부작용은 감소시키는 효과가 있는 것으로 추측된다. 녹차폴리페놀의 시스플라틴 항암작용 증강과 신장 독성 억제 및 감소 효과는 시스플라틴에 의한 암 치료 시 화학요법제의 보조제로서 이용가치가 있는 것으로 생각되며, 항암화학요법제에 대한 보조제로의 개발을 위해서는 대규모 동물실험을 통한 효과 입증 및 부작용에 대한 실험과 임상연구가 뒷받침되어야 할 것으로 사료된다.

Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2

  • Kang, June Hee;Kim, Hyun Ji;Park, Mi Kyung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • 제25권6호
    • /
    • pp.625-633
    • /
    • 2017
  • Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and $Ca^{2+}$ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.

Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할 (The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition)

  • 이수연;주민경;전현민;김초희;박혜경;강호성
    • 생명과학회지
    • /
    • 제27권11호
    • /
    • pp.1245-1255
    • /
    • 2017
  • 암세포는 정상세포와는 다른 metabolism 특히 glycolytic switch를 나타낸다. Glycolytic switch는 암세포가 정상세포와 달리 산소가 충분한 상태에서도 미토콘드리아에 의존하지 않고 glycolysis를 통해 대부분의 ATP 에너지를 생성하는 현상이다. 또한 암세포는 invasion 및 metastasis 능력을 획득하기 위해 epithelial-mesenchymal transition (EMT)를 나타낸다. EMT와 glycolytic switch는 암세포의 생존 및 증식에 관여하는 중요한 현상이지만, 이들 상호작용 및 그 기작에 대한 연구는 아직 밝혀져 있지 않다. Snail은 EMT를 유도하는 주요한 전사인자이다. 본 연구진은 이전 연구에서 Snail이 발생 및 암성장에 관여하는 전사인자인 Dlx-2에 의해 조절됨을 밝혔다. 또한 Wnt가 Dlx-2/Snail cascade을 통하여 EMT 및 glycolytic switch을 유도함을 밝혔다. 본 연구에서는 glycolytic switch가 Wnt에 의한 EMT에 미치는 영향을 규명하고자 하였다. Dlx-2/Snail의 glycolytic switch target 유전자로 phosphofructokinase-2/fructose-2,6-bisphosphatase 2 (PFKFB2)를 발굴하였다. PFKFB2는 fructose-2,6-bisphosphate (F2,6BP)의 합성 및 분해에 관여하는 효소로서 glycolysis에서 중요하게 작용한다. Wnt에 의해 PFKFB2 발현이 Dlx-2/Snail 의존적으로 증가함을 관찰하였다. 또한 PFKFB2를 knockdown한 결과 Wnt에 의한 EMT가 억제되므로 glycolytic switch가 Wnt에 의한 EMT에 관여할 가능성이 높을 것으로 보인다. 뿐만 아니라 PFKFB2 shRNA가 xenograft mouse model에서 tumor 성장 및 metastasis를 억제하는 것으로 나타났다. 또한 Human 암조직에서 정상조직에 비해 PFKFB2의 발현이 높음을 관찰하였다. 따라서 PFKFB2가 Wnt-Dlx-2/Snail-induced EMT 및 metastasis에서 중요한 역할을 할 것으로 예상된다.

T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway

  • Soon Yong Park;Hyeongrok Choi;Soo Min Choi;Seungwon Wang;Sangin Shim;Woojin Jun;Jungkwan Lee;Jin Woong Chung
    • BMB Reports
    • /
    • 제57권6호
    • /
    • pp.305-310
    • /
    • 2024
  • T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelial-mesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway.