• Title/Summary/Keyword: EMT-6 cell

Search Result 37, Processing Time 0.019 seconds

Effects of Mercury Chloride on Nitric Oxide Syntheses in Mouse Peritoneal Macrophage and EMT-6 Cell (Mercury Chloride가 마우스 복강대식세포 및 EMT-6 세포의 Nitric Oxide 생성에 미치는 영향)

  • Kwon, Keun-Sang;Koh, Dai-Ha;Ki, No-Suk;Youm, Jung-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.30 no.2 s.57
    • /
    • pp.369-380
    • /
    • 1997
  • The effects of treatment with mercury chloride on the nitrite and nitrate syntheses were observed in peritoneal macrophages from Balb/c mice and EMT-6 cells in vitro. The cells were cultured in Dulbecco's modified Eagle's medium(DMEM) with cytokines. Amounts of nitrite and nitrate in the culture media after 24 and 36 hours of culture were about 2-fold, and 3-fold of those measured after 12 hours respectively. There were very close associations Between the amounts of nitrite and nitrate measured in the culture media according to culture time. The survival rate of peritoneal macrophages was significantly decreased by mercury chloride added into the media in dose-dependent manner, however the survivals of EMT-6 cells were not influenced by mercury chloride concentration in media. Nitrite and nitrate syntheses were dose-dependently decreased by mercury chloride added in culture media. ATP synthesis also decreased in EMT-6 cells by mercury chloride. These results reported here suggest that the disorder of cell mediated immunity by mercurials could be related to the inhibition of nitric oxide synthesis which seems to be caused by the inhibition of ATP synthesis.

  • PDF

Emerging paradigms in cancer cell plasticity

  • Hyunbin D. Huh;Hyun Woo Park
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.273-280
    • /
    • 2024
  • Cancer cells metastasize to distant organs by altering their characteristics within the tumor microenvironment (TME) to effectively overcome challenges during the multistep tumorigenesis. Plasticity endows cancer cell with the capacity to shift between different morphological states to invade, disseminate, and seed metastasis. The epithelial-to-mesenchymal transition (EMT) is a theory derived from tissue biopsy, which explains the acquisition of EMT transcription factors (TFs) that convey mesenchymal features during cancer migration and invasion. On the other hand, adherent-to-suspension transition (AST) is an emerging theory derived from liquid biopsy, which describes the acquisition of hematopoietic features by AST-TFs that reprograms anchorage dependency during the dissemination of circulating tumor cells (CTCs). The induction and plasticity of EMT and AST dynamically reprogram cell-cell interaction and cell-matrix interaction during cancer dissemination and colonization. Here, we review the mechanisms governing cellular plasticity of AST and EMT during the metastatic cascade and discuss therapeutic challenges posed by these two morphological adaptations to provide insights for establishing new therapeutic interventions.

Melittin inhibits cell migration and invasion via blocking of the epithelial-mesenchymal transition (EMT) in lung cancer cells (EMT 억제를 통한 멜리틴의 폐암세포 이동 및 침투 억제 효과)

  • Cho, Hyun-Ji;Jeong, Yun-Jeong;Kim, Mun-Hyeon;Chung, Il-Kyung;Kang, Dong Wook;Chang, Young-Chae
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.1
    • /
    • pp.105-110
    • /
    • 2018
  • Melittin is the main component of apitoxin (bee venom) that has been reported to have anti-inflammatory and anti-cancer effects. Herein, we demonstrated that inhibition of epithelial-mesenchymal transition (EMT) by melittin causes suppression of cancer cell migration and invasion. Melittin significantly suppressed the epidermal growth factor (EGF)-induced cell migration and invasion in lung cancer cells. Moreover, melittin up-regulated the expression of epithelial marker protein, E-cadherin, and down-regulated the expression of EMT related proteins, vimentin and fibronectin. Mechanistic studies revealed that melittin markedly suppressed the expression of EMT mediated transcription factors, ZEB2, Slug, and Snail. The EGF-induced phosphorylation of AKT, mTOR, P70S6K, and 4EBP1 was also inhibited by melittin, but not that of ERK and JNK. Therefore, the inhibitory effect of melittin on migration and invasion of lung cancer cells may be associated with the inhibition of EMT via blocking of the AKT-mTOR-P70S6K-4EBP1 pathway.

$NO_2^-$ and ATP synthesis in the EMT-6 cell stimulated by mercury chloride (수은에 의한 EMT-6 세포의 $NO_2^-$ 및 ATP 생성)

  • Oh, Gyung-Jae;Koh, Dai-Ha;Youm, Jung-Ho
    • Journal of Preventive Medicine and Public Health
    • /
    • v.29 no.3 s.54
    • /
    • pp.495-505
    • /
    • 1996
  • Effect or mercury chloride on the synthesis or $NO_2^-$ and ATP were observed in EMT-6 cells which were cultured with cytokines$(IL-1\alpha\;and\;IFN-\gamma)$ and various concentrations of mercury chloride from 0.05 to $0.8{\mu}M$. Viability of EMT-6 cells were observed above 90% in almost groups. There were not significant differences in the viability between mercury supplemented groups and control group. It suggests viability of EMT-6 cells were not influenced by these concentrations of mercury chloride. Results of the synthesis of nitrite showed significant time and group effect. There is a significant interaction effect between concentration of mercury chloride and culture time. The effect of various concentration of mercury chloride is not the same for all levels of culture time. There were significant differences in the synthesis of nitrite between mercury chloride supplemented groups and control group, and the synthesis of nitrite in EMT-6 cell by the supplement of mercury chloride was significantly decreased in a dose-dependent manner. Results of the synthesis of ATP showed a significant group effect, and the time main effect and the $Group{\times}Time$ interaction were also significant. There were significant differences in the synthesis of ATP between mercury chloride supplemented groups and control group, and the synthesis of ATP in EMT-6 cell by the supplement of mercury chloride was significantly decreased in a dose - dependent manner. These results suggest that the disorder of cell mediated immunity by mercury chloride could be related to the inhibition of nitric oxide synthesis which will be caused by the decreased synthesis of ATP.

  • PDF

Effects of Dietary Tea Polyphenol on Tumor Growth Inhibition by Cisplatin in EMT6 Breast Tumor-bearing Mice (유방암 세포(EMT6) 이식 마우스에서 녹차폴리페놀 음용이 시스플라틴의 암 조직 성장 억제에 미치는 영향)

  • Lee, Byoung-Rai;Cho, Jung-Il;Park, Pyoung-Sim
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • The aim of this study is to evaluate the effects of green tea polyphenol (GTP) on anticancer treatment with cisplatin (CP), using both an in vitro cell culture model and an in vivo mouse model of established breast tumor. Mouse breast cancer cells (EMT6) were treated with or without GTP and CP followed by determination of the cell viability using an MTT assay. The relative cell viability of CP treated EMT6 cells was 96% at a 20 ${\mu}g/mL$ concentration of cisplatin; however, in combination with GTP (50 ${\mu}g/mL$), the cell viability decreased to 20% at the same concentration of CP (20 ${\mu}g/mL$). For the in vivo study, EMT6 cells were inoculated into Balb/c mice for the establishment of a tumor-bearing mice model. The tumor-bearing mice were treated with CP (5 mg/kg. i.p.) with or without dietary GTP (0.2% drinking water). Tumor growth was monitored by a measurement of tumor size using a digital caliper, and nephrotoxicity was determined by enzymatic and histological examinations. The levels of p53 and caspase-3 in tumor tissues were examined by a Western blot. In tumor-bearing mice treated with GTP plus CP, the increment of tumor volume showed a significant reduction, compared with CP or GTP alone. The levels of p53 and cleaved caspase-3 (caspase-3/p17) in tumor tissues of tumor-bearing mice were increased by CP and GTP compared to CP alone. In CP treated tumor-bearing mice, ${\gamma}$-glutamyltranspeptidase (GGT) and alkaline phosphatase (AP) activities were decreased, and marked tubular necrosis and dilatation were observed in the kidney. CP-induced enzymatic and histopathological changes in the kidney of tumor-bearing mice were reduced by combinations of GTP with CP. The results of these experiments demonstrated that dietary GTP has a potentiating effect on CP anti-tumor activity and a protective effect against CP-induced renal dysfunction. Therefore, GTP may be used as a modulator in anticancer treatment with CP.

Sphingosylphosphorylcholine Induces Thrombospondin-1 Secretion in MCF10A Cells via ERK2

  • Kang, June Hee;Kim, Hyun Ji;Park, Mi Kyung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.25 no.6
    • /
    • pp.625-633
    • /
    • 2017
  • Sphingosylphosphorylcholine (SPC) is one of the bioactive phospholipids that has many cellular functions such as cell migration, adhesion, proliferation, angiogenesis, and $Ca^{2+}$ signaling. Recent studies have reported that SPC induces invasion of breast cancer cells via matrix metalloproteinase-3 (MMP-3) secretion leading to WNT activation. Thrombospondin-1 (TSP-1) is a matricellular and calcium-binding protein that binds to a wide variety of integrin and non-integrin cell surface receptors. It regulates cell proliferation, migration, and apoptosis in inflammation, angiogenesis and neoplasia. TSP-1 promotes aggressive phenotype via epithelial mesenchymal transition (EMT). The relationship between SPC and TSP-1 is unclear. We found SPC induced EMT leading to mesenchymal morphology, decrease of E-cadherin expression and increases of N-cadherin and vimentin. SPC induced secretion of thrombospondin-1 (TSP-1) during SPC-induced EMT of various breast cancer cells. Gene silencing of TSP-1 suppressed SPC-induced EMT as well as migration and invasion of MCF10A cells. An extracellular signal-regulated kinase inhibitor, PD98059, significantly suppressed the secretion of TSP-1, expressions of N-cadherin and vimentin, and decrease of E-cadherin in MCF10A cells. ERK2 siRNA suppressed TSP-1 secretion and EMT. From online PROGgene V2, relapse free survival is low in patients having high TSP-1 expressed breast cancer. Taken together, we found that SPC induced EMT and TSP-1 secretion via ERK2 signaling pathway. These results suggests that SPC-induced TSP-1 might be a new target for suppression of metastasis of breast cancer cells.

The Role of Phosphofructokinase-2/Fructose-2,6-bisphosphatase 2 (PFKFB2) in Wnt-induced Epithelial-mesenchymal Transition (Wnt에 의한 epithelial-to-mesenchymal transition에서 PFKFB2의 역할)

  • Lee, Su Yeon;Ju, Min Kyung;Jeon, Hyun Min;Kim, Cho Hee;Park, Hye Gyeong;Kang, Ho Sung
    • Journal of Life Science
    • /
    • v.27 no.11
    • /
    • pp.1245-1255
    • /
    • 2017
  • Most cancer cells produce ATP predominantly through glycolysis instead of through mitochondrial oxidative phosphorylation, even in the presence of oxygen. The phenomenon is termed the Warburg effect, or the glycolytic switch, and it is thought to increase the availability of biosynthetic precursors for cell proliferation. EMTs have critical roles in the initiation of the invasion and metastasis of cancer cells. The glycolytic switch and EMT are important for tumor development and progression; however, their correlation with tumor progression is largely unknown. The Snail transcription factor is a major factor involved in EMT. The Snail expression is regulated by distal-less homeobox 2 (Dlx-2), a homeodomain transcription factor that is involved in embryonic and tumor development. The Dlx-2/Snail cascade is involved in Wnt-induced EMTs and the glycolytic switch. This study showed that in response to Wnt signaling, the Dlx-2/Snail cascade induces the expression of PFKFB2, which is a glycolytic enzyme that synthesizes and degrades fructose 2, 6-bisphosphate (F2,6BP). It also showed that PFKFB2 shRNA prevents Wnt-induced EMTs in the breast-tumor cell line MCF-7. The prevention indicated that glycolysis is linked to Wnt-induced EMT. Additionally, this study showed PFKFB2 shRNA suppresses in vivo tumor metastasis and growth. Finally, it showed the PFKFB2 expression is higher in breast, colon and ovarian cancer tissues than in matched normal tissues regardless of the cancers' stages. The results demonstrated that PFKFB2 is an important regulator of EMTs and metastases induced by the Wnt, Dlx-2 and Snail factors.

T-plastin contributes to epithelial-mesenchymal transition in human lung cancer cells through FAK/AKT/Slug axis signaling pathway

  • Soon Yong Park;Hyeongrok Choi;Soo Min Choi;Seungwon Wang;Sangin Shim;Woojin Jun;Jungkwan Lee;Jin Woong Chung
    • BMB Reports
    • /
    • v.57 no.6
    • /
    • pp.305-310
    • /
    • 2024
  • T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelial-mesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway.