• Title/Summary/Keyword: EML(Emission Layer)

Search Result 39, Processing Time 0.027 seconds

Investigation of the Green Emission Profile in PHOLED by Gasket Doping

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.226-226
    • /
    • 2016
  • PHOLED devices which have the structure of ITO/HAT-CN(5nm)/NPB(50nm)/EML(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) are fabricated to investigate the green emission profile in EML by using a gasket doping method. CBP and Ir(ppy)3 (2% wt) are co-deposited homogeneously as a background material of EML for green PHOLED, then a 5nm thickness of additionally doped layer by Ir(btp)2 (8% wt) is formed as a profiler of the green emission. The total thickness of the EML is maintained at 30nm while the distance of the profiler from the HTL/EML interface side (x) is changed in 5nm steps from 0nm to 25nm. As shown in Fig. 1, the green (513nm) peak from Ir(ppy)3 is not observed when Ir(btp)2 is also doped homogeneously because Ir(ppy)3 works as an gasket dopant of the Ir(btp)2 :CBP system. Therefore, in this experment, Ir(btp)2 can be used as a profiler of the green emission in CBP:Ir(ppy)3 system. The emission spectra from the PHOLED devices with different x are shown in Fig. 2. In this gasket doping system, stronger red peak means more energy transfer from green to red dopant or higher exciton density by green dopant. To find the green emission profile, the external quantum efficiency (EQE) at 3mA/cm2 for red peaks are calculated. More green light emission at near EML/HBL interface than that of HTL/EML is observed (insert of Fig. 2). This means that the higher exciton density at near EML/HBL interface in homogeneously doped CBP with Ir(ppy)3. As shown in Fig. 3, excitons can be quenched easily to HTL(NPB) because the T1 level of HTL(2.5eV) is relatively lower than that of EML(2.6eV). On the other hand, the T1 level of HBL(2.7eV) is higher than that of EML.

  • PDF

A Study on the Emission Properties of Organic Electroluminescence Device by Various Stacked Organics Structures (유기물 적층 구조에 따른 유기 발광 소자의 발광 특성에 관한 연구)

  • 노병규;김중연;오환술
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.943-949
    • /
    • 2000
  • In this paper, the single and double heterostructure organic light-emitting devices(OLEDs) were fabricated. The single heterostructure OLED(TYPE 1) is consisted of TPD as a HTL(hole transfer layer) and Alq$_3$as an EML(emitting layer). The double heterostructure OLED(TYPE 2) is consisted of TPD as a HTL, Alq$_3$as an EML and PBD as an ETL(electron transfer layer). The another double heterostructure OLED(TYPE 3) is consisted of TPD as a HTL, PBD as an EML and Alq$_3$as an ETL. We obtained a strong green emission device with maximum EL emission wavelength 500nm in TYPE 3. When the applied voltage was 12V, the emission luminescence was 120.9cd/㎡. The chromaticity index of TYPE 3 was x=0.29, y=0.50. In the characteristic plot of current-voltage, TYPE 3 device was turned on at 6.9V. This voltage was a fairly low turn-on voltage. TYPE 1 and 2 device were turned on at 10V and 8.9V respectively. These types showed no good properties over that of TYPE 3.

  • PDF

Effect of Doping Profile of Blue Activator on the Emission Characteristics of White Organic Light Emitting Diodes (청색 활성제의 첨가 형상 변화에 따른 백색 OLED의 발광 특성)

  • Lim, Byung-Gwan;Seo, Jung-Hyun;Paek, Kyeong-Kap;Ju, Sung-Hoo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.486-490
    • /
    • 2011
  • To investigate the effect of two-emission-layer structure on the emission characteristics of the phosphorescent white organic light-emitting diodes (PHWOLEDs), the PHWOLEDs with two different emission layers, blue EML(29 nm, FIrpic-doped mCP) and red EML(1 nm, Ir(pq)$_2$acac-doped CBP)), following host-guest system were fabricated. The bi-layered blue EML was composed of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 7, 10, 15, 20, and 25 vol.%, respectively). When the concentration of FIrpic was increased from 7 to 15 vol.%, light emission luminance, current efficiency, and external quantum efficiency were increased. On the contrary, when the concentration of FIrpic was increased to more than 20 vol.%, light emission luminance, current efficiency, and external quantum efficiency were decreased. The PHWOLEDs with the bi-layered blue EML structure of mCP:FIrpic (20 nm, 7 vol.%) and mCP:FIrpic (9 nm, 15 vol.%) showed current efficiency of 29.7 cd/A and external quantum efficiency (EQE) of 16.6% at 1,000 $cd/cm^2$.

Dependency of the emission efficiency on doping profile of the red phosphorescent organic light-emitting diodes

  • Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.224-224
    • /
    • 2016
  • Many researchers have been tried to improve the performance of the phosphorescent organic light-emitting diode(PHOLED) by controlling of the dopant profile in the emission layer. In this work, as shown in Fig. 1 insert, a typical red PHOLED device which has the structure of ITO/NPB(50nm)/CBP(30nm)/TPBi(10nm)/Alq3(20nm)/LiF(0.8nm)/Al(100nm) is fabricated with a 5nm thick doping section in the emission layer. The doping section is formed by co-deposition of CBP and Ir(btp)2acac with a doping concentration of 8%, and it's location(x) is changed from HTL/EML interface to EML/HBL in 5nm steps. The current efficiency versus current density of the devices are shown in Fig. 1. By changing the location of doping section, as shown in Fig. 1 and 2, at x=5nm, the efficiency shows the maximum of 3.1 cd/A at 0.5 mA/cm2 and it is slightly decreased when the section is closed to HTL and slightly increased when the section is closed to HBL. If the doping section is closed to HTL(NPB) the excitons can be quenched easily to NPB's triplet state energy level(2.5eV) which is relatively lower than that of CBP(2.6eV). Because there is a hole accumulation at EML/HBL interface the efficiency can be increased slightly when the section is closed to HBL. Even the thickness of the doping section is only 5nm,. the maximum efficiency of 3.1 cd/A with x=5 is closed to that of the homogeneously doped device, 3.3 cd/A, because the diffusion length of the excitons is relatively long. As a result, we confirm that the current efficiency of the PHOLED can be improved by the doping profile optimization such as partially, not homogeneously, doped EML structure.

  • PDF

A Study on the Efficiency Effects of Capping Layer on the Top Emission Organic Light Emitting Diode (전면 유기발광 다이오드 기능층 캐핑레이어 적용에 따른 효율상승에 관한 연구)

  • Lee, DongWoon;Cho, Eou Sik;Jeon, Yongmin;Kwon, Sang Jik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.119-124
    • /
    • 2022
  • Top emission organic light-emitting diode (TEOLED) is commonly used because of high efficiency and good color purity than bottom - emission organic light-emitting device (BEOLED). Unlike BEOLED, TEOLED contain semitransparent metal cathode and capping layer. Because there are many characteristics to consider just simple thickness change, optimizing organic thickness of TEOLED for microcavity is difficult. So, in this study, we optimized Device capping layer at unoptimized micro-cavity structure TEOLED device. And we compare only capping layer with unoptimized microcavity structure can overcome optimized micro-cavity structure device. We used previous our optimized micro-cavity structure to compare each other. As a result, it has been found that the efficiency can be obtained almost the same or higher only capping layer, which is stacked on top of the device and controls only the thickness and refractive index, without complicated structural calculations. This means that higher efficiencies can be obtained more easily in laboratories with limited organic materials or when optimizing new structures etc.

Solution-Processed Quantum Dot Light-Emitting Diodes with TiO2 Nanoparticles as an Electron Transport Layer and a PMMA Insulating Layer (TiO2를 전자수송층으로 적용하고 PMMA 절연층을 삽입한 용액공정 기반 양자점 전계 발광 소자의 활용)

  • Kim, Bomi;Kim, Jungho;Kim, Jiwan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.93-97
    • /
    • 2022
  • We report highly efficient quantum dot light-emitting diodes (QLEDs) with TiO2 nanoparticles (NPs) as an alternative electron transport layer (ETL) and poly (methyl methacrylate) (PMMA) as an insulating layer. TiO2 NPs were applied as ETLs of inverted structured QLEDs and the effect of the addition of PMMA between ETL and emission layer (EML) on device characteristics was studied in detail. A thin PMMA layer supported to make the charge balance in the EML of QLEDs due to its insulating property, which limits electron injection effectively. Green QLEDs with a PMMA layer produced the maximum luminance of 112,488 cd/m2 and a current efficiency of 25.92 cd/A. We expect the extended application of TiO2 NPs as the electron transport layer in inverted structured QLEDs device in the near future.

An Inverted Bottom Emission Organic Light Emitting Device with a New Electron Injection Layer.

  • Lee, You-Jong;Kim, Joo-Hyung;Kwon, Soon-Nam;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.1023-1026
    • /
    • 2007
  • Highly efficient inverted bottom emission organic light emitting device (IBOLED) with a structure of ITO/EIL/Alq3/NPB/WO3/Al was investigated. To enhance electron injection from ITO cathode to Alq3 EML layer, we introduced ultra thin Al layer and Liq layer between ITO and Alq3. The device characteristics showed tune on voltage of 4.5V, the maximum luminance of 21100 Cd/m2 and current efficiencies of 3.56 Cd/A.

  • PDF

형광 Green OLED Device의 Hole Transport layer와 Electron Transport Layer에 따른 특성 변화 분석

  • Kim, Hyeon-Gi;Choe, Byeong-Deok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.229.1-229.1
    • /
    • 2016
  • 본 연구에서는 Hole Transporting Layer(HTL)와 Electron Transporting Layer(ETL)의 두께에 의한 특성을 비교해보기 위해서 각각 0, 10, 20 nm로 HTL, ETL 두께를 달리한 형광 OLED소자를 제작하였다. ETL의 두께가 얇아질수록 $V_{TH}$ 값은 2.5V에서 0.9 V로 낮게 나타났고 소자의 전체 두께와 on voltage는 비례한다는 특성을 발견할 수 있었다. HTL과 ETL이 두꺼울수록 각 layer에서 carrier들의 이동에 delay가 생기고 emission layer에서 표면까지 거리가 생기기 때문이다. ETL의 두께가 두꺼울수록 높은 luminance 값을 나타내는 차이를 보여주고 있다. Hole에 비해 이동도가 작은 electron은 emission layer까지 늦게 전달되어, EML내에서 비교적 cathode쪽에 가까운 곳에서 exciton이 형성되기 때문이다. CE에도 더 두꺼운 ETL을 가진 소자가 더 높은 CE값 가짐을 확인할 수 있다. 모든 소자가 $200mA/cm^2$에서 가장 높은 CE값을 나타낸 이유는 $200mA/cm^2$에서 electron-hole 결합이 만들어내는 exciton형성이 가장 많기 때문이다. PE, QE도 ETL 두께가 두꺼울수록 특성을 향상이다. 결론적으로 ETL의 두꺼울수록 current density값이 감소함을 보이고 있는 반면 turn on voltage, luminance, efficiency 증가함을 볼 수 있다.

  • PDF

Characteristics of blue phosphorescent OLED with partially doped simple structure (부분 도핑을 이용한 단순구조 청색인광 OLED 특성)

  • Kim, Tae-Yong;Moon, Dae-Gyu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.156-156
    • /
    • 2010
  • We have developed highly efficient blue phosphorescent organic light-emitting devices (OLED) with simplified architectures using blue phosphorescent material. The basis device structure of the blue PHOLED was anode / emitting layer (EML) / electron transport layer (ETL) / cathode. The dopant was partially doped into the host layer for investigating recombination zone, current efficiency, and emission characteristics of the blue PHOLEDs.

  • PDF

Multi Quantum Well 구조를 이용한 Red에서 Green으로의 energy transfer mechanism의 이해

  • Kim, Gang-Hun;Park, Won-Hyeok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.145-145
    • /
    • 2015
  • 처음 유기물의 인광 발견 이후 Host-dopant 시스템을 이용하여 Emission layer(EML)을 Co-deopsition 하는 방법으로 주로 인광 유기 발광 다이오드를 제작 하였다. [1] co-deposition을 이용해 만든 유기 발광 다이오드에 많은 장점이 있지만, 반대로 소자를 제작하는데 있어서는 많은 문제점을 가지고 있다. [2-4] 이러한 문제점을 개선하기 위하여 co-deposition 대신 non-doped Multi Quantum Well(MQW) 구조를 사용하여 doping 하지 않는 방법을 이용하는 논문들이 보고 되고 있다. Hole, electron, exciton이 MQW 구조를 지나면서, dopant well 안에 갇히게 되고, 그 안에서 다른 layer 간에 energy transfer와, hole-electron leakage가 줄어 들어, 더 효율적인 유기 발광 다이오드를 만들 수 있게 된다. [5-7] 이 연구에서는 CBP를 Potential Barrier로 사용하고, Ir(ppy)3 (Green dopant), Ir(btp)2 (Red dopant) 를 각각 Potential Well로 사용하였고, 두께는 CBP 9nm, dopant 1nm로 하였다. 이러한 소자를 만들고 dopant를 3개의 well에 적당히 배치하여, 각 well에서의 실험적인 발광 량 과, EML 안에서의 발광 mechanism 그리고 각 potential barrier를 줄여가며 dexter, forster에 의한 energy transfer에 대하여 알 수 있었다.

  • PDF