• 제목/요약/키워드: EMG-to-force

검색결과 187건 처리시간 0.021초

근전도의 패턴분류와 근력 추정에 관한 연구 (A Study on the Pattern Classification of EMG and Muscle Force Estimation)

  • 권장우;장영건;정동명;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제13권1호
    • /
    • pp.1-8
    • /
    • 1992
  • In the field of prosthesis arm control, the pattern classification of the EMG signal is a required basis process and also the estimation of force from collected EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why we estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation which is used in the force estimation process, the transformed signal Is inputed into the probabilistic model for pattern classification. To verify the different results of the multiple channels, SNR(signal to noise ratio) function is introduced.

  • PDF

수준별 힘 안정성에 대한 EMG 변인 및 근육 특성의 관여 (Involvement of EMG Variables and Muscle Characteristics in Force Steadiness by Level)

  • 조현덕;김맹규
    • 대한의용생체공학회:의공학회지
    • /
    • 제44권5호
    • /
    • pp.336-345
    • /
    • 2023
  • The present study was designed to evaluate changes in neuromuscular properties and the structural and qualitative characteristics of muscles during submaximal isometric contractions at low-to-relatively vigorous target forces and to determine their influence on force steadiness (FS). Thirteen young adult males performed submaximal isometric knee extensions at 10, 20, 50, and 70% of their maximal voluntary isometric contraction using their non-dominant legs. During submaximal contractions, we recorded force, EMG signals from vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF), and ultrasound images from the distal RF (dRF). Force and EMG standard deviation (SD) and coefficient of variation (CV) values were used to measure FS and EMG steadiness, respectively. Muscle thickness (MT), pennation angle (PA), echo intensity (EI), and texture features were calculated from ultrasound images to assess the structural and qualitative characteristics of the muscle. FS, neuromuscular properties, and texture features showed significant differences across different force levels. Additionally, there were significant differences in EMG_CV among the quadriceps at the 50% and 70% force levels. The results of correlation analysis revealed that FS had a significant relationship with EMG_CV in VM, VL, and RF, as well as with the texture features of dRF. This study's findings demonstrate that EMG steadiness and texture features are influenced by the magnitude of the target force and are closely related to FS, indicating their potential contribution to force output control.

손가락 동작과 힘 추정 시스템 (Motion and Force Estimation System of Human Fingers)

  • 이동철;최영진
    • 제어로봇시스템학회논문지
    • /
    • 제17권10호
    • /
    • pp.1014-1020
    • /
    • 2011
  • This presents a motion and force estimation system of human fingers by using an Electromyography (EMG) sensor module and a data glove system to be proposed in this paper. Both EMG sensor module and data glove system are developed in such a way to minimize the number of hardware filters in acquiring the signals as well as to reduce their sizes for the wearable. Since the onset of EMG precedes the onset of actual finger movement by dozens to hundreds milliseconds, we show that it is possible to predict the pattern of finger movement before actual movement by using the suggested system. Also, we are to suggest how to estimate the grasping force of hand based on the relationship between RMS taken EMG signal and the applied load. Finally we show the effectiveness of the suggested estimation system through several experiments.

근전도신호의 패턴인식 및 힘추정을 통한 의수의 지능적 궤적제어에 관한 연구 (A Study on Intelligent Trajectory Control for Prosthetic Arm by Pattern Recognition & Force Estimation Using EMG Signals)

  • 장영건;홍승홍
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권4호
    • /
    • pp.455-464
    • /
    • 1994
  • The intelligent trajectory control method that controls moving direction and average velocity for a prosthetic arm is proposed by pattern recognition and force estimations using EMG signals. Also, we propose the real time trajectory planning method which generates continuous accelleration paths using 3 stage linear filters to minimize the impact to human body induced by arm motions and to reduce the muscle fatigue. We use combination of MLP and fuzzy filter for pattern recognition to estimate the direction of a muscle and Hogan's method for the force estimation. EMG signals are acquired by using a amputation simulator and 2 dimensional joystick motion. The simulation results of proposed prosthetic arm control system using the EMG signals show that the arm is effectively followed the desired trajectory depended on estimated force and direction of muscle movements.

  • PDF

근전도에 기반한 근력 추정 (EMG-based Prediction of Muscle Forces)

  • 추준욱;홍정화;김신기;문무성;이진희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 추계학술대회 논문집
    • /
    • pp.1062-1065
    • /
    • 2002
  • We have evaluated the ability of a time-delayed artificial neural network (TDANN) to predict muscle forces using only eletromyographic(EMG) signals. To achieve this goal, tendon forces and EMG signals were measured simultaneously in the gastrocnemius muscle of a dog while walking on a motor-driven treadmill. Direct measurements of tendon forces were performed using an implantable force transducer and EMG signals were recorded using surface electrodes. Under dynamic conditions, the relationship between muscle force and EMG signal is nonlinear and time-dependent. Thus, we adopted EMG amplitude estimation with adaptive smoothing window length. This approach improved the prediction ability of muscle force in the TDANN training. The experimental results indicated that dynamic tendon forces from EMG signals could be predicted using the TDANN, in vivo.

  • PDF

인간-기계 인터페이스를 위한 근전도 기반의 실시간 손가락부 힘 추정 (EMG-based Real-time Finger Force Estimation for Human-Machine Interaction)

  • 최창목;신미혜;권순철;김정
    • 한국정밀공학회지
    • /
    • 제26권8호
    • /
    • pp.132-141
    • /
    • 2009
  • In this paper, we describe finger force estimation from surface electromyogram (sEMG) data for intuitive and delicate force control of robotic devices such as exoskeletons and robotic prostheses. Four myoelectric sites on the skin were found to offer favorable sEMG recording conditions. An artificial neural network (ANN) was implemented to map the sEMG to the force, and its structure was optimized to avoid both under- and over-fitting problems. The resulting network was tested using recorded sEMG signals from the selected myoelectric sites of three subjects in real-time. In addition, we discussed performance of force estimation results related to the length of the muscles. This work may prove useful in relaying natural and delicate commands to artificial devices that may be attached to the human body or deployed remotely.

G-induced Loss of Consciousness(G-LOC) 예측을 위한 신체 부위별 Electromyogram(EMG) 신호 분석 (Analysis on Electromyogram(EMG) Signals by Body Parts for G-induced Loss of Consciousness(G-LOC) Prediction)

  • 김성호;김동수;조태환;이용균;최부용
    • 한국군사과학기술학회지
    • /
    • 제20권1호
    • /
    • pp.119-128
    • /
    • 2017
  • G-induced Loss of Consciousness(G-LOC) can be predicted by measuring Electromyogram(EMG) signals. Existing studies have mainly focused on specific body parts and lacked of consideration with quantitative EMG indices. The purpose of this study is to analyze the indices of EMG signals by human body parts for monitoring G-LOC condition. The data of seven EMG features such as Root Mean Square(RMS), Integrated Absolute Value(IAV), and Mean Absolute Value(MAV) for reflecting muscle contraction and Slope Sign Changes(SSC), Waveform Length (WL), Zero Crossing(ZC), and Median Frequency(MF) for representing muscle contraction and fatigue was retrieved from high G-training on a human centrifuge simulator. A total of 19 trainees out of 47 trainees of the Korean Air Force fell into G-LOC condition during the training in attaching EMG sensor to three body parts(neck, abdomen, calf). IAV, MAV, WL, and ZC under condition after G-LOC were decreased by 17 %, 17 %, 18 %, and 4 % comparing to those under condition before G-LOC respectively. Also, RMS, IAV, MAV, and WL in neck part under condition after G-LOC were higher than those under condition before G-LOC; while, those in abdomen and calf part lower. This study suggest that measurement of IAV and WL by attaching EMG sensor to calf part may be optimal for predicting G-LOC.

다중 채널을 갖는 근전도의 신호처리에 관한 연구 (I) (A study on the ENG Signal Processing for Multichannel System)

  • 권장우;장영건;정동명;민홍기;홍승홍
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1991년도 추계학술대회
    • /
    • pp.25-29
    • /
    • 1991
  • In the field of prosthesis arm control, tile pattern classification of the EMG signal is a required basis process and also the estimation of force from col looted EMG data is another necessary duty. But unfortunately, what we've got is not real force but an EMG signal which contains the information of force. This is the reason why he estimate the force from the EMG data. In this paper, when we handle the EMG signal to estimate the force, spatial prewhitening process is applied from which the spatial correlation between the channels are removed. And after the orthogonal transformation, which is used in the force estimation process the transformed signal is inputed into the probabilistic model for pattern classification. To verify the different results of the multiple channels, SNR(signal to noire ratio) function is introduced.

  • PDF

양측성 하악지 시상분할술을 이용한 악교정 수술시술 후 교합력과 근전도 변화 (THE OCCLUSAL FORCE AND EMG CHANGE AFTER BSSRO)

  • 이성규;최용관;황대용;김경욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권5호
    • /
    • pp.537-542
    • /
    • 2008
  • BSSRO is most frequently operated among orthognathic surgery techniques for repairment of maxillofacial deformities. In case of patients with maxillofacial asymmetry accompanying mandibular protrusion who are operated by BSSRO, this study considers the recovering time for masticatory force of each tooth and Masseteric EMG and the adequate time enabling normal occlusion. The patients who are operated with BSSRO under general anesthesia in Dankook Dental Hospital, Department of OMS are selected for this study. The control group is devided into 2. 26 patients with facial asymmetry accompanying mandibular protrusion are selected for group 1 and their maximum voluntary bite force and masseteric EMG are measured. Group 2 is formed by volunteers with healthy dentition who are measured maximum bite force and masseteric EMG on both sides of the mouth. At the week of 3rd, 5th, 7th, 9th and 11th, Mann-Whitney U test is carried on for statistical analysis and the result is as follows. 1. Patients with mandibular protrusion showed apparently low maximum bite force and masseteric EMG than patients with normal occlusion. 2. In comparison with control group 1, Occlusal force is regained in incisors and canines at the 9th week and in premolars and molars, 11th week and masseteric EMG is regained at 11th week. 3. Comparing to normal occlusal patients, no recovery could be found in experimental group in every parts of the mouth.

근전도 기반의 실시간 등척성 손가락 힘 예측 알고리즘 개발 (Development of a Real-Time Algorithm for Isometric Pinch Force Prediction from Electromyogram (EMG))

  • 최창목;권순철;박원일;신미혜;김정
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1588-1593
    • /
    • 2008
  • This paper describes a real-time isometric pinch force prediction algorithm from surface electromyogram (sEMG) using multilayer perceptron (MLP) for human robot interactive applications. The activities of seven muscles which are observable from surface electrodes and also related to the movements of the thumb and index finger joints were recorded during pinch force experiments. For the successful implementation of the real-time prediction algorithm, an off-line analysis was performed using the recorded activities. Four muscles were selected for the force prediction by using the Fisher linear discriminant analysis among seven muscles, and the four muscle activities provided effective information for mapping sEMG to the pinch force. The MLP structure was designed to make training efficient and to avoid both under- and over-fitting problems. The pinch force prediction algorithm was tested on five volunteers and the results were evaluated using two criteria: normalized root mean squared error (NRMSE) and correlation (CORR). The training time for the subjects was only 2 min 29 sec, but the prediction results were successful with NRMSE = 0.112 ${\pm}$ 0.082 and CORR = 0.932 ${\pm}$ 0.058. These results imply that the proposed algorithm is useful to measure the produced pinch force without force sensors in real-time. The possible applications include controlling bionic finger robot systems to overcome finger paralysis or amputation.

  • PDF