• 제목/요약/키워드: EMG model

검색결과 121건 처리시간 0.025초

안면근육 표면근전도 신호기반 근육 조합 최적화를 통한 단모음인식 (Monophthong Recognition Optimizing Muscle Mixing Based on Facial Surface EMG Signals)

  • 이병현;류재환;이미란;김덕환
    • 전자공학회논문지
    • /
    • 제53권3호
    • /
    • pp.143-150
    • /
    • 2016
  • 본 논문에서는 안면근육 표면근전도를 기반으로 근육 조합 최적화를 통한 한국어 단모음 인식 방법을 제안한다. 표면근전도 신호는 한국어 단모음 발음에 따라 서로 다른 패턴과 근육 활성도를 보였다. 이전 연구에서 높은 인식 정확도를 보였던 RMS, VAR, MMAV1, MMAV2와 Cepstral Coefficients를 특징 추출 알고리즘으로 사용하였으며, QDA(Quadratic Discriminant Analysis)와 HMM(Hidden Markov Model)으로 한국어 단모음을 분류하였다. 트레이닝 단계에서 입력 받은 데이터로 근육조합을 최적화하고, 최적화 결과를 인식단계에 적용한다. 이때, 새로운 근전도 신호를 입력받고 한국어 단모음을 최종 인식한다. 실험결과 제안한 방법의 인식 정확도가 QDA에서 평균 85.7%, HMM에서 평균 75.1%를 보였다.

정상인(正常人)의 저작운동시(咀嚼運動時) 교근(咬筋)과 측두근(側頭筋)의 근활성도(筋活性度)에 관(關)한 연구(硏究) (AN INTEGRATED EMG STUDY OF THE MASSETER AND ANTERIOR TEMPORAL MUSCLE IN NORMAL PERSON DURING CHEWING)

  • 백영걸;최대균;박남수;최부병
    • 대한치과보철학회지
    • /
    • 제25권1호
    • /
    • pp.213-226
    • /
    • 1987
  • The purpose of this study was to standardize and classify the coordination pattern among the left and right masseter and anterior temporal muscles, in terms of integrated EMG values per stroke during gum chewing in normal subjects. In this study, 20 normal subjects were selected to chew a piece of gum and integrated EMG from middle portion of the masseter and anterior temporal muscles on both sides were recorded 20 times during each of the right and left chewing respectively. And the Bioelectric Processor Model EM2 (Myo-tronies Research, Inc., U.S.A.) with the surface electrodes was used to record the EMG activity during all experimental procedures. The results were as follows; 1. In all subjects, the chewing side masseter muscle was predominantly active among the four muscles examined. 2. The integrated EMG value of the middle of masseter muscle was significantly predominant than those of the anterior temporal muscle (p<0.0001) on the chewing side, but no significant predominant was observed on the nonchewing side (p<0.98). 3. In comparison with same muscles on the chewing and nonchewing side, low correlation coefficient was found between the middle of masseter muscles (R=0.317), but high correlation coefficient was found between the anterior temporal muscles (R=0.738). Between two muscles on the same side, there were significant correlation in the chewing (R=0.557) and nonchewing side (R=0.625). 4. In the coordination patterns among four muscles examined, distinct individual differences were found, but in an identical subject one fixed pattern appeared with significant reproducibility.

  • PDF

Identification of Flexion Withdrawal Reflex Using Linear Model in Spinal Cord Injury

  • Kim Yong-Chul;Youm Youn-Gil
    • Journal of Mechanical Science and Technology
    • /
    • 제20권8호
    • /
    • pp.1183-1194
    • /
    • 2006
  • The aim of this study was to identify the characteristics of the flexion withdrawal reflex modulated by the hip angle and hip movement in spinal cord injury (SCI). The influence of the hip position and passive movement were tested in 6 subjects with chronic SCI. Each subject placed in a supine position and lower leg was fixed with the knee at 5 -45 degree flexion and the ankle at 25-40 degree plantar flexion. A train of 10 stimulus pulses were applied at 200 Hz to the skin of the medial arch to trigger flexion reflexes. From results of the regression analysis, static properties of normalized muscle activation of flexor muscles have the linear relationship with respect to hip angle (P< 0.05). In order to verify the neural contribution of flexion reflex, we compared the static and dynamic gains of estimated muscle activations with measured EMG of ankle flexor muscle. Form this study, we postulate that the torque and muscle response of flexion withdrawal reflex have linear relationship with hip angle and angular velocity.

보행 시 하지근육 역할에 대한 최적화 기법적 해석 (Analysis of Lower Extremity Muscle Force Variations during the Gait Cycle with Optimization Method)

  • 전응식;김영은
    • 대한의용생체공학회:의공학회지
    • /
    • 제24권6호
    • /
    • pp.509-514
    • /
    • 2003
  • 보행시 하지 주요 근육내의힘의 변화를 계산하기 위한 수학적 모델을 개발하였다. 인체는 7개의 운동 분절로 모델링 하였으며, 하지 당 8개의 수요 근육을 고려한 모델을 사용하였다. 보행시 하지 근육의 발생되는 힘의 변화는 최적화 기법을 적용하여 계산하였으며, 계산 결과는 기존의 EMG 데이터와 비교 검토하여 모델의 타당성을 확인하였다. 또한 보행시 각 운동 분절의 운동 데이터를 이용하여 역동력학적 기법으로 구해진 하지 관전내의 토크량의 변화와 비교에서도 본 연구에서의 계산 결과는 만족할 만한 일치를 보이고 있었다.

A Biomechanical Model of Lower Extremity Movement in Seated Foot Operation

  • Kyu-Sung Hwang
    • 산업경영시스템학회지
    • /
    • 제23권60호
    • /
    • pp.37-46
    • /
    • 2000
  • A biomechanical model of lower extremity in seated postures was developed to assess muscular activities of lower extremity involved in a variety of foot pedal operations. The model incorporated four rigid body segments with the twenty-four muscles to represent lower extremity This study deals with quasi-static movement to investigate dynamic movement effect in seated foot operation. It is found that optimization method which has been used for modeling the articulated body segments does not predict the forces generated from biarticular muscles and antagonistic muscles reasonably. So, the revised nonlinear optimization scheme was employed to consider the synergistic effects of biarticular muscles and the antagonistic muscle effects from the stabilization of the joint. For the model validation, three male subjects performed the experiments in which EMG activities of the nine lower extremity muscles were measured. Predicted muscle forces were compared with the corresponding EMG amplitudes and it showed no statistical difference. For the selection of optimal seated posture, a physiological meaningful criterion was developed for muscular load sharing developed. For exertion levels, the transition point of type F motor unit of each muscle is inferred by analyzing the electromyogram at the seated postures. Also, for predetermined seated foot operations exertion levels, the recruitment pattern is identified in the continuous exertion, by analyzing the electromyogram changes due to the accumulated muscle fatigue.

  • PDF

A Stochastic Model of Muscle Fatigue as a Monitor of Individual Muscle Capabilities

  • Lee, Myun-W.
    • 대한산업공학회지
    • /
    • 제6권1호
    • /
    • pp.27-38
    • /
    • 1980
  • This paper presents the validation of a stochastic model of muscle fatigue during static muscle contractions. Forty four laboratory experiments, covering eleven test conditions for two trained subjects, were run in order to estimate fatigue and recovery rates, based on EMG observations. The validation of the model was made by comparing the model predictions to the experimental fatigue time. The validation study supports that the stochastic model of muscle fatigue accurately represents the underlying fatigue process. The study also provides support that the fatigue model can be used as a monitor of individual muscle capabilities.

  • PDF

관절각도를 이용한 근력 추정 알고리듬 (An Algorithm for Estimating Muscle Forces using Joint Angle)

  • 손종상;김영호
    • 대한의용생체공학회:의공학회지
    • /
    • 제30권3호
    • /
    • pp.241-246
    • /
    • 2009
  • Since inappropriate muscle forces mean that people cannot perform some activities related to roles of the muscle, muscle forces have been considered as an important parameter in clinic. Therefore, many methods have been introduced to estimate muscle forces indirectly. One of the methods is muscle tissue dynamics and it is widely used in commercial softwares including musculoskeletal model, such as SIMM. They, however, need motion data captured from 3-dimensional motion analysis system. In this study, we introduced an algorithm to estimate muscle forces in real-time by using joint angles. The heel-rise movements were performed for a normal with 3-dimensional motion analysis system, EMG measurement system, and electrogoniometers. Joint angles obtained from electrogoniometers and EMG signals were used to estimate muscle forces. Simulation was performed to find muscle forces using motion data which was imported into musculoskeletal software. As the results, muscle lengths and forces from the developed algorithm were similar to those from commercial software in pattern. Results of this study would be helpful to implement a tool to calculate reasonable muscle forces in real-time.

Ergonomic Evaluation of Workload in Imbalanced Lower Limbs Postures

  • Kim, Eun-Sik;Yoon, Hoon-Yong
    • 대한인간공학회지
    • /
    • 제30권5호
    • /
    • pp.671-681
    • /
    • 2011
  • Objective: The purpose of this study is to compare the workload level at each lower limbs posture and suggest the ergonomic workstation guideline for working period by evaluating the imbalanced lower limbs postures from the physiological and psychophysical points of view. Background: Many workers like welders are working in various imbalanced lower limbs postures either due to the narrow working conditions or other environmental conditions. Method: Ten male subjects participated in this experiment. Subjects were asked to maintain 3 different lower limbs postures(standing, squatting and bending) with 3 different working conditions(balanced floor with no scaffold, imbalanced floor with 10cm height of scaffold, and imbalanced floor with 20cm height of scaffold). EMG data for the 4 muscle groups(Retus Femoris, Vastus Lateralis, Tibialis Anterior, Gastrocnemius) from each lower limbs posture were collected for 20 seconds every 2 minutes during the 8 minutes sustaining task. Subjects were also asked to report their discomfort ratings of body parts such as waist, upper legs, lower legs, and ankle. Results: The ANOVA results showed that the EMG root mean square(RMS) values and the discomfort ratings(CR-10 Rating Scale) were significantly affected by lower limbs postures and working time(p<0.05). The correlation was analyzed between the EMG data and the discomfort ratings. Also, prediction models for the discomfort rating for each posture were developed using physical condition, working time, and scaffold height. Conclusion: We strongly recommend that one should not work more than 6 minutes in a standing or squatting postures and should not work more than 4 minutes in a bending posture. Application: The results of this study could be used to design and assess working environments and methods. Furthermore, these results could be used to suggest ergonomic guidelines for the lower limbs postures such as squatting and bending in the working fields in order to prevent fatigue and pain in the lower limbs body.

마비환자의 근전도제에기능적전기자극을 위한 M-wave 제거용 최적적응필터 설계 (Design of an Optimal Adaptive Filter for the Cancellation of M-wave in the EMG Controlled Functional Electrical Stimulation for Paralyzed Individuals)

  • 염호준;박영철;이영희;윤영로;신태민;윤형로
    • 대한의용생체공학회:의공학회지
    • /
    • 제25권6호
    • /
    • pp.479-487
    • /
    • 2004
  • 중추신경계손상으로 인하여 약화된 근육기능을 회복하기 위한 전기자극의 제어신호로 생체신호를 이용하고 있다. 생체신호중에서 마비된 근육에서 발생되는 자발적이면서 근수축을 하기에 부족한 자발근전도신호로 전기자극의 강도를 조절해야 하는 경우, 전기자극에 의해 발생되어 자발근전도신호에 섞이는 M-wave를 제거해야 한다. 본 연구에서는 M-wave를 제거하고 동시에 자발근전도신호의 크기를 보존하기 위한 최적필터를 설계하였고 최적필터의 계수는 입력 공분산 행렬의 최소고유치에 해당하는 고유벡터가 됨을 보였으며. inverse Power methd(IPM)을 사용하여 이를 적응적으로 구현하는 과정을 통해 기존의 예측오차필터 방법이 부최적 방법임을 보였다. 최적필터의 성능을 평가하기 위하여 모의데이터에 대한 false-positive rate를 측정하여 분석하였으며, 실험결과는 최적필터가 이전에 연구되었던 예측오차필터에 비해 효과적으로 M-wave를 제거할 수 있음을 보여준다.

하악위의 변화가 교근과 전측두근의 근활성 및 교합력에 끼치는 영향 (Effects of the Changes of Mandibular Position on the Muscle Activity in Masseter and Anterior Temporalis and on the Bite Force)

  • Sun-Oh Kwon;Kyung-Soo Han
    • Journal of Oral Medicine and Pain
    • /
    • 제13권1호
    • /
    • pp.43-52
    • /
    • 1988
  • The author studied masticatory muscle activity and bite force in normal persons without Temporomandibular Disorders(TMD) signs and symptoms, The number of subjects was 15, and the age of them was from 22 to 25 years. Electromyography was used to record the muscle activity in tapping and clenching movement with or without occlusal splint. 3 splints were made from 3 different mandibular position, that if, centric occlusion position, Rocabado's mandibular rest position, Dawson's centric relation position. The thickness of splint was 3.0-3.5㎜ at molar region. The muscle examined were Masseter and Anterior Temporalis attached with surface electrodes and the device used to measure the EMG level was Bioelectric processor Model EM2. After recording the EMG, the author measured the bite force level in clenching movement with bite force meter Model MPM-3000 in the dame position used in the EMG experiment. The obtained results were as follow : 1. With occlusal splints insetion, the amount of decreased muscle activity in Anterior Temporalis was more than those in Masseter. 2. In the three maxillomandibular relationships with occlusal splints, Masseter showed slightly increased level of muscle in centric occlusion but Ant. Temporalis showed decreased level of muscle activity reversely in that position. 3. Muscle activities between Rocabado's rest position and Dawson's centric relation position were generally similar whatever the muscles or the movements the author examined. 4. Bite force in clenching movement increased with splints insertion, especially with the splint registered in centric occlusion position.

  • PDF