• Title/Summary/Keyword: EMG gap

Search Result 4, Processing Time 0.022 seconds

Changes of Upper Trapezius Muscle Activity and EMG Gap After Transcutaneous Electrical Nerve Stimulation in Subjects With Myofascial Pain Syndrome (경피신경전기자극 후 상부 승모근 활성도와 EMG gap의 변화)

  • Koh, Eun-Kyung;Kwon, Oh-Yun;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.10 no.1
    • /
    • pp.37-50
    • /
    • 2003
  • The purpose of this study was to compare visual analogue scale (VAS), pain threshold (PT), $%RMS_{RVC}$, and EMG gaps before and after applying transcutaneous electrical nerve stimulation (TENS) on the upper trapezius muscle at the patients with myofascial pain syndrome (MPS). The subjects were 4 men and 10 women composed of both the inpatients and outpatients who were diagnosed as MPS at Wonju Medical Center. VAS and PT measurements were performed to assess the subjective pain level. The reference voluntary contraction (RVC) test was performed for 15 seconds for normalization on the bilateral trapezius muscle using surface electromyography (sEMG). After 3-minute resting time, the EMG signal was recorded while performing a typing activity for 2 minutes and then TENS was applicated with a comfortable intensity for 10 minutes. The EMG activity of the upper trapezius muscle was recorded during typing for 2 minutes. The results of study were as follows: 1) VAS score was significantly decreased on the more painful side after treatment, however, it was not significantly different on the less painful side. 2) PT was increased after treatment on both sides, however, it was not significantly different between before and after the TENS application. 3) The EMG activity during typing was significantly decreased after treatment, and 4) The EMG gaps were significantly increased after TENS treatment compared to before it. Consequently, the study showed that TENS was effective in decreasing VAS, $%RMS_{RVC}$, and in increasing EMG gaps. The EMG gap analysis could be a useful method to measure pain in patients with MPS in the upper trapezius.

  • PDF

Effects of Squat Exercise Using Balls on the Gap Interval between Knees, Q-angle, Muscle Activity in Women with Genu-Varum (안굽이무릎을 가진 여성에게 볼을 이용한 스쿼트 운동이 무릎사이 간격과 Q각, 근 활성도에 미치는 효과)

  • Lee, Keoncheol;Han, Jiwon;Bae, Wonsik
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.8 no.2
    • /
    • pp.97-107
    • /
    • 2020
  • Purpose : The purpose of this study is to investigate the effect of squat exercise using a ball on the gap between knees and Q angle of a subject with a genu-varum, and to prove the effect, to provide a clinical basis for developing into a knee correction exercise program. Methods : As a result of posture measurement through GPS, 26 female with genu-varum with a knee length of 5 cm or more were studied. The group was randomly assigned to 13 squat exercise group using ball (experimental group) and 13 general squat exercise groups (control group). The experimental group placed the ball between both knees in a position where the distance between both feet was slightly wider than the shoulder width on a flat support surface, and fixed the ball, and then squat with the start signal. The control group squats without a ball. Each group performed three sets of exercise three times a week for six weeks. Before their exercise, after three and six weeks, EMG, GPS, digital goniometer measurement, the vastus medialis (VM), the vastus lateralis (VL), and the Q-angle were measured in the squat exercise posture. EMG was measured in squat exercise posture. Results : The distance between the knees was reduced. EMG is activated in group A, the group B experimental results showed the high activity of the VL. Q-angle had increased. But the experimental group increased more than the control group. Conclusion : We have confirmed through our experiments that the distance interval between the knees during squat exercises using a ball can be reduced. Furthermore, it would also be helpful to ensure the treatment of genu-varum.

Are Lighter Smartphones Ergonomically Better?

  • Yoon, Jangwhon;Kim, Kisong;Yoon, Taelim
    • Journal of the Ergonomics Society of Korea
    • /
    • v.34 no.1
    • /
    • pp.11-18
    • /
    • 2015
  • Objective: The aim of this study was to understand the effects of phone weight on the typing performance and muscle recruitment in the neck and upper extremity while typing a text message with dominant hand. The iPhone4 and iPhone5 were compared due to their 28-gram differences in weight. Background: Too much use of a cellular phone can lead the musculoskeletal disorders in the upper extremity. Phone makers tend to make their new models bigger, lighter, faster and smarter. Method: Fourteen healthy volunteers without any history of neuromuscular disorders or ongoing pain who used their smartphone more than one year were recruited. A 112g phone (iPhone5) and a 142g phone (iPhone4) were used for typing the lyric of the Korean national anthem with their dominant hand. Typing duration, the typing error, the perceived fatigue, and preference was investigated. Muscle recruitment and the resting gap of neck (middle trapezius and levator scapula), shoulder (infraspinatus and mid deltoid), elbow (biceps brachii and brachioradialis), thumb (extensor and abductor policis brevis) were collected using surface electromyography. Typing error was counted and typing speed was calculated in characters per min. The data were analyzed using a paired t-test and chi-square (${\chi}^2$) analysis for the effects of phone weight on the typing performance parameters and muscle recruitment. Results: Typing text message with iPhone5 took longer but had less muscle recruitment in brachioradialis, and extensor policis brevis muscles. Lighter weight of iPhone5 made biceps brachii to rest less without increasing the mean %EMG. Conclusion/Application: Findings of this study can be valuable information for phone designers to develop more productive device and for smartphone users to prevent the musculoskeletal disorders in the upper extremities.

Effects of Consecutive whole Body Vibration Exercise using Heel Raise Posture on Neuromuscular Response during Single-leg Stance (뒤꿈치 들기 자세를 이용한 전신진동 운동이 외발서기 시 근신경 반응에 미치는 영향)

  • Kim, Dae Dong;Lee, Myeounggon;Youm, Changhong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.2
    • /
    • pp.104-112
    • /
    • 2021
  • Objective: This study aimed to analyze the effects of consecutive whole body vibration through heel raise posture on the center of pressure and electromyography of anterior tibial muscle, lateral gastrocnemius and soleus muscles during single-leg stance. Method: The subjects of this study included 30 healthy males in their 20's, with the following inclusion criteria: no history of orthopaedic medical history, no participation in regular exercises, no history of whole body vibration exercise, and right leg being the dominant leg. The experimental procedure involved pretreatment measurement of eye open single-leg stance, application of whole body vibration for 30 seconds, post-treatment measurement (3 measurements in total). Static and dynamic movements have been measured over 2 separate experiments, with 72 hours gap between the experiments. Static movement involved maintaining single-leg heel raise posture for 30 seconds while applying whole body vibration, and dynamic movement involved heel raise (15 repetitions over 30 seconds) while applying whole body vibration. The strength of applied whole body vibration was 35 Hz frequency and 2~4 mm amplitude. Results: As the single-leg posture after static heel raise posture, mediolateral velocity of the center of pressure at post 2 and post 3 were significantly reduced compared to the pre-treatment measurement. In addition, the percentage for reference voluntary contraction in anterior tibial muscle and soleus and median frequency at anterior tibial muscle and lateral gastrocnemius muscle at post 3 were significantly decreased compared to the pre-treatment value. As the single-leg posture after dynamic heel raise posture, the mediolateral 95% edge frequency of the center of pressure and median frequency at anterior tibial muscle, lateral gastrocnemius muscle, and soleus muscle at post 3 were significantly reduced compared to the pre-treatment value. Conclusion: Acute whole body vibration via static and dynamic heel raise posture have positive effect on mediolateral posture control during single-leg stance.